D Kl

A new formalised PKI| with no trusted parties

Vincent Cheval, Mark Ryan, Jiangshan Yu

UNIVERSITYOF
BIRMINGHAM

2 April, LORIA, Nancy

Context

Most communications take place over a public network

Gmail

by Google

It is important to ensure their security

2o

Context

Asymmetric encryption

e

Context

: : generate a
Asymmetric encryption T

key

B

Context

: : generate a
Asymmetric encryption T

key

B

pK(sk)

| distribute
my public key

want to send a : ,
message to Bob Asymmetnc encrypt|on

Context

want to send a : ,
message to Bob Asymmetnc encrypt|on
T ———

pk(sk)

—

enc(M,pk(sk))

-_—

| encrypt it with the

public key of Bob
and send it

Context
Asymmetric encryption B
my private key

Asymmetric encryption

:*

pk(sk)

SSL / TLS protocol R A
HTTPS connection L Tuhe @feedly

Distribution of the public key

Distribution of the public key

Authenticity of pk(sk) 7

——

pk(sk)

enc(M,pk(sk))

Distribution of the public key

Authenticity of pk(sk) 7

Distribution of the public key

Authenticity of pk(sk) 7

| intercept
Bob’'s message

Distribution of the public key

Authenticity of pk(sk) 7

| intercept
Bob’'s message

| generate a new
set of public and
private key

Distribution of the public key

Authenticity of pk(sk) 7

pk(sk’)

| send the fake
public key to Alice

Distribution of the public key

Authenticity of pk(sk) 7

pk(sk’)

EXIsting solution

Public key certificate: digital identity (standard X.509)

Certificate authority: VeriSign, Comodo, Go Daddy...

EXIsting solution

Public key certificate: digital identity (standard X.509)

Certificate authority: VeriSign, Comodo, Go Daddy...

EXIsting solution

Public key certificate: digital identity (standard X.509)
Certificate authority: VeriSign, Comodo, Go Daddy...

| want to

register my
public key

EXIsting solution

Public key certificate: digital identity (standard X.509)
Certificate authority: VeriSign, Comodo, Go Daddy...

| want to
register my

public key

EXIsting solution

Public key certificate: digital identity (standard X.509)
Certificate authority: VeriSign, Comodo, Go Daddy...

External ",
verification

| want to
register my

public key

EXIsting solution

Public key certificate: digital identity (standard X.509)
Certificate authority: VeriSign, Comodo, Go Daddy...

External ",
verification R

| want to talk
to Bob

EXIsting solution

Public key certificate: digital identity (standard X.509)
Certificate authority: VeriSign, Comodo, Go Daddy...

signsmpk(sk)y | pk(sk)
‘N
\’E\ A External ~~~ 58 t)

o tern: ~
s verification N
¢

EXIsting solution

Public key certificate: digital identity (standard X.509)
Certificate authority: VeriSign, Comodo, Go Daddy...

SigNske(PK(sk) y
‘N
0_0\ /; External .

~ W O o . .
En verification .~

\

N~
-
1

N

‘ «

J
A

| verify the
signature

EXIsting solution

Public key certificate: digital identity (standard X.509)
Certificate authority: VeriSign, Comodo, Go Daddy...

%riSign@

(sk
SIgNske: (pk(sky skca, pk(s CA) pk(sk)
00\ Bob External .

verification AR

/ enc(M,pk(sk))

Problems with existing solution

| skca, pk(skca
SlgnskCA(pk(Sk)y C p () pk(sk)
\/ - Bob 56 \ }

enc(M,pk(sk))

Problems with existing solution

Problems with existing solution

Problems with existing solution

Problems with existing solution

Problems with existing solution

signske(pk(sk’),Bob)

Problems with existing solution

signske(pk(sk’),Bob)

Problems with existing solution

signskCA(pk(sk’V

\

c«'\T?
\"//u

P

Problems with existing solution

| skca, pk(skca
SlgnskCA(pk(Sk)y C p () pk(sk)
\/ - Bob 56 \ }

enc(M,pk(sk))

Problems with existing solution

Problems with existing solution

CaiO00. @ slobaisign. \/é‘friSign@ > 100 in Firefox
skca, pk(skca)

Problems with existing solution

'Problem 2: Monopoly of the certificate authority '

e ———— ——— e —— — — —

CanTonn. @ ciobaisign. \/griSigm > 100 in Firefox
skca, pk(skca)

Problems with existing solution

'Problem 2: Monopoly of the certificate authority '

e ———— ——— e —— — — —

CONORY. @ ciobaision. \/griSigm > 100 in Firefox

skca, pK(skca)
SN TS

No link between CAs

Problems with existing solution

‘ Problem 2: Monopoly of the certlflcate authorlty

*""-‘“y

CONODD. @ clobasign. \/griSign@ > 100 in Firefox

skca, pK(skca)
AN V4

No link between CAs

«— Embedded in browser

Lok

State of the art

Several proposals:

* Crowd-sourcing (Perspectives, DoubleCheck)
* Pinning (TACK)
 Public Log (Certiticate Transparency, AKI, Sovereign Key)

t Log accessible to anyone, veritiable proof

Issues with public log proposals:

* Relies on trusted parties (monitors, validator, mirror)
e Single log

* No revocation

* Monopoly

8o

Our proposal

* No trusted party

e Fully transparent

e Secure for multiple public log of certificates
 Revocation

Our proposal

* No trusted party

e Fully transparent

e Secure for multiple public log of certificates
 Revocation

Structure of Public log

Data structure

* Digest of the log
e Action: Addition, deletion, moditication, search, etc
* Proofs of any action, presence, absence, extension, etc

Structure of Public log

Data structure

* Digest of the log
e Action: Addition, deletion, moditication, search, etc
* Proofs of any action, presence, absence, extension, etc

E\
-

[PN §
°
\74

¢

Structure of Public log

Data structure

* Digest of the log
e Action: Addition, deletion, moditication, search, etc
* Proofs of any action, presence, absence, extension, etc

& BOb, dlog
e
1\)7/7

\/.
-

N

Structure of Public log

Data structure

* Digest of the log
e Action: Addition, deletion, moditication, search, etc
* Proofs of any action, presence, absence, extension, etc

r BOb, dlog
/E\ |
0 certsob, Aiog
"

Structure of Public log

Data structure

* Digest of the log
e Action: Addition, deletion, moditication, search, etc
* Proofs of any action, presence, absence, extension, etc

* BOb,dbg
& >\
0

certeob, diog’

proofp(certsob,diog’)

Structure of Public log

Data structure

* Digest of the log
e Action: Addition, deletion, moditication, search, etc
* Proofs of any action, presence, absence, extension, etc

BOb, dlog

certeob, diog’

proofp(certsob,diog’)

proofe(diog,diog’)

Sklog, pk(Sklog)

Structure of Public log

Data structure

* Digest of the log
e Action: Addition, deletion, moditication, search, etc
* Proofs of any action, presence, absence, extension, etc

* BOb,dbg
\‘/ E\)
- "y certob, Aiog

proofp(certsob,diog’)

fedo,dO’ B
proofe(dig,diog) Skiog, PK(Skiog)

| verity
proofy(certson, diog’)
and proofe(diog,diog’)

Structure of Public log

Data structure

* Digest of the log
e Action: Addition, deletion, moditication, search, etc
* Proofs of any action, presence, absence, extension, etc

* BOb,dbg
\‘/ E\)
- "y certob, Aiog

proofp(certsob,diog’)

fedo,dO’ B
proofe(dig,diog) Skiog, PK(Skiog)

| verity
proofy(certson, diog’)
and proofe(diog,diog’)

Structure of Public log

Data structure

* Digest of the log
e Action: Addition, deletion, moditication, search, etc
* Proofs of any action, presence, absence, extension, etc

BOb,dbg

certeob, diog’

proofp(certsob,diog’)

proofe(diog,diog’)

Size and verificatintime of
~ proofs must be O(log(n))

| verity
proofy(certson, diog’)
and proofe(diog,diog’)

 Based on a binary hash tree

 Based on a binary hash tree
e Data are stored on the leaves

(h(h(dy, ds), ds))

RN
G‘(dl,dz))
[\

Tl

 Based on a binary hash tree
e Data are stored on the leaves

* The digest of the data is the label of the root

h(h(dy, ds), d3))

RN
G‘(dl, dQD

/N

Tl

 Based on a binary hash tree
e Data are stored on the leaves

* The digest of the data is the label of the root
* Addition on the right

h(h(dy, ds), d3))

RN
G‘(dl, dQD

/N

Tl

 Based on a binary hash tree
e Data are stored on the leaves

* The digest of the data is the label of the root
* Addition on the right

G‘(dthD
/\

Tl

 Based on a binary hash tree
e Data are stored on the leaves

* The digest of the data is the label of the root
* Addition on the right

Ch(h(dl, d2), h(ds, d4)D

N
G‘(dl, dz)) [h(d:sa d4))

\

Tl

 Based on a binary hash tree
e Data are stored on the leaves

* The digest of the data is the label of the root
* Addition on the right

(h(h(d1,d>), h(ds, da)))
N
(h(d1,da)) (h(ds,dy))

NN

 Based on a binary hash tree
e Data are stored on the leaves

* The digest of the data is the label of the root
* Addition on the right

h(h(h(d1,d2), h(ds, da)), ds)
/
(h(h(dy,d2), h(ds, ds))) \
LN
(h(di,ds)) (h(ds,da))
VARV

 Based on a binary hash tree
e Data are stored on the leaves

* The digest of the data is the label of the root
* Addition on the right

(h(h(d17d2)ah(d3,d4)))
N
(h(dldeD [h(di%adél))
/\ /\

 Based on a binary hash tree
e Data are stored on the leaves

* The digest of the data is the label of the root
* Addition on the right

/ S
(h(h(dlad2)ah(d37d4))) (h(d57d6))
N /
(h(d1,ds)) (h(ds,ds))

VAN

 Based on a binary hash tree
e Data are stored on the leaves

* The digest of the data is the label of the root
* Addition on the right

/
[h(h(d17d2)»h(d3>d4)))
/
(h(d1,ds)) (h(ds,ds))

/ \ / \

Proot of presence of some data in the digest

Proot of presence of some data in the digest

Proot of presence of some data in the digest

h(h(h(dy, d2), h(ds, ds)), h(ds, ds)))
/
[h(h(dl, d2), h(ds, d4)D

N
Ch(dl, dzD [h(d& d4D
/\ / \

Proot of presence of some data in the digest

h(h(h(dy, d2), h(ds, ds)), h(ds, ds)))
/
[h(h(dl, d2), h(ds, d4)D

N
Ch(dl, dzD (h(d?), d4))
/\ /\

Proot of presence of some data in the digest

h(h(h(dy, d2), h(ds, ds)), h(ds, ds)))
/
(h(h(dl, d2), h(ds, d4)))

N
Ch(dl, dzD (h(d:%, d4))
/\ /\

Proot of presence of some data in the digest

‘h(h(h(dy,ds), h(ds, ds)), h(ds, dg)))

Proof of extension between two digests

[h(h;ll,dg),dg)) h(h(h(d1 ds), h(ds, ds)), h(ds, dg)))
(h(dy, d>)) . (h(h(dy, da). d3 d4) h(ds, ds))
[\ \

/ /
[d1 dg] [h (ds, d4] d

Q

Proof of extension between two digests

h(h(d1, da) dBD h(h(h(d1,d2), h(d3, da)), h(ds, de))
/ \
(h(dy.d>)) . (h(h(dy.d>), h(d3.da))) h(ds, d)

/[\ /

13 / 21

Proof of extension between two digests

[hayzl), d3)) h(h(h(d1,d2), h(d3, da)), h(ds, de))
/ \
[d1 dg] . (h(h(dy.d>), h(d3.da))) h(ds, d)

N 7N
(h(dy.da)) (n(dsda)

/[\ /[\

' Proofin

~ O(log(n)

Proof of extension between two digests

[hayzl), d3)) h(h(h(d1,d2), h(d3, da)), h(ds, de))
/ \
[d1 dg] . ‘h(h(dy.d>), h(d3.da))) h(ds, d)

N VN
[h(dl,dz)] [h(dg,d4)]

/[\ /[\

' Proofin |

~ O(log(n)

Proof of extension between two digests

[hayzl d>),ds) h(h(h(d1,d2), h(d3, da)). h(ds, d))
/ \
[d1 dgj . ‘h(h(dy.d>), h(d3.da))) h(ds, d)

N VN
[h(dl,dz)] [h(dg,d4)]

/[\ /[\

' Proofin |

~ O(log(n)

Proof of extension between two digests

[hayzl), d3)) ‘h(h(h(d1, d2), h(ds, da)), h(ds, ds))
/ \
[d1 dg] . ‘h(h(dy.d>), h(d3.da))) h(ds, d)

N N\
w dz) chdsd@

| Proofin
~ Of(log(n))

* Digest in constant size (size of the hash)
* Action: addition
* Proofs of presence and extension

* Digest in constant size (size of the hash)
* Action: addition
* Proofs of presence and extension

Why proof of extension and not addition 7

* Digest in constant size (size of the hash)
* Action: addition
* Proofs of presence and extension

Why proof of extension and not addition 7

*

AN Bob, diog

&) ,
= certob, diog

proofe(diog,diog’)

* Digest in constant size (size of the hash)
* Action: addition
* Proofs of presence and extension

Why proof of extension and not addition 7

BOb, dlog

CertBob, dlog’

proofe(diog,diog’)

thounded number of crtificates | 1
~added between diog and diog’ ‘

e —— e — S— —— _

14 / 21

ChronTree

* Digest in constant size (size of the hash)
* Action: addition
* Proofs of presence and extension

|Issues with Chrontree

ChronTree

* Digest in constant size (size of the hash)
* Action: addition
* Proofs of presence and extension

|Issues with Chrontree

* Deletion and modification of data not possible
No revocation
* No efficient proof of absence

Possible stripping attack

Possibility of adding fake certificate

14 / 21

* Digest in constant size (size of the hash)
* Action: addition
* Proofs of presence and extension

|Issues with Chrontree

* Deletion and modification of data not possible
No revocation
* No efficient proof of absence

Possible stripping attack

Possibility of adding fake certificate

Introduction of a new data structure:1
' AVL hash tree ‘

AVL hash tree

Data structure:

* Digest in constant size

 Action: addition, deletion, modification, search
 Proofs of addition, deletion,modification

* Proofs of presence, absence

AVL hash tree

Data structure:

* Digest in constant size

 Action: addition, deletion, modification, search
 Proofs of addition, deletion,modification

* Proofs of presence, absence

* No proof of extension

AVL hash tree

Data structure:

* Digest in constant size

 Action: addition, deletion, modification, search
 Proofs of addition, deletion,modification

* Proofs of presence, absence

* No proof of extension

|

lmChronTreie

— e ——— - -

AVL hash tree

Data structure:

* Digest in constant size

 Action: addition, deletion, modification, search
 Proofs of addition, deletion,modification

* Proofs of presence, absence

* No proof of extension

|

lmChronTreie

— e ——— - -

- AVL hash tree stores the current state
Data: certificates
- ChronTree stores requests
Data: add(cert), rev(cert) + digest of AVL hash tree

(fsz 97

AVL hash tree

 Based on binary search tree

AVL hash tree

' Order R on data

 Based on binary search tree

AVL hash tree

' Order R on data

 Based on binary search tree
e Satisfies the AVL property

AVL hash tree

 Based on binary search tree . Order R on data |

e Satisfies the AVL property

1
0/

0/\0
(dr,

AVL hash tree

 Based on binary search tree . Order R on data |

e Satisfies the AVL property
* Also based on hash tree

1
0/

0/\0
(dr,

AVL hash tree

' Order R on data |

 Based on binary search tree
e Satisfies the AVL property

e Also based on hash tree

dg, 1

VAN

d570 d1270

/\

dlaO d770

AVL hash tree

' Order R on data |

 Based on binary search tree
e Satisfies the AVL property

e Also based on hash tree

ds, 0, 1 di2,0,0

/N

d17070 d77070

16 / 21

AVL hash tree

* Based on binary search tree | Order CR o]y data i
o Satisfies the AVL property o “
* Also based on hash tree

(d5,0,1,hs) (di2,0,0, his)
N

(dl, 0,0, hl) Cd7, 0,0, ha

16 / 21

AVL hash tree

* Based on binary search tree | Order CR o]y data i
o Satisfies the AVL property o “
* Also based on hash tree

(d5,0,1,hs) (di2,0,0, his)
N

(dl, 0,0, hl) Cd7, 0,0, ha

16 / 21

AVL hash tree

* Based on binary search tree | Order CR o]y data i
o Satisfies the AVL property o |
* Also based on hash tree

(d5,0,1,hs) (di2,0,0, his)
N

(d1,0,0,h1) (dr,0,0, ham

AVL hash tree

* Based on binary search tree | Order CR o]y data i
o Satisfies the AVL property o |
* Also based on hash tree

Cdg,l,Q hg)

AN

(@50.105) (10.0.17) < INDD
N

(d1,0,0,h1) (dr,0,0, ham

AVL hash tree

* Based on binary search tree ' Order Ron data
» Satisfies the AVL property T
* Also based on hash tree

Cdg, 1,2, hg)

N
(@5:0.115) (120017 < INDD
N

(d1,0,0,h1) (dr,0,0, ham

AVL hash tree

' Order R on data

 Based on binary search tree
e Satisfies the AVL property

e Also based on hash tree

Cd871727h8) h(dg,l,z,h5,h12)
NN

CORDI XX 0.0
DN

(d1,0,0,h1) (dr,0,0, ham

AVL hash tree

' Order R on data |

 Based on binary search tree
e Satisfies the AVL property

* Also based on hash tree
* The digest of the data is the hash value of the root

Cd871727 hSD h(d8,1,2,h5,h12)

N
(@00 (20,0 1) <D
7N

(d1,0,0,h1) (dr,0,0, ham

AVL hash tree

e Addition and deletion similar to AVL tree

1

/\0
(&) (d
0/ \0
@) (4

AVL hash tree

e Addition and deletion similar to AVL tree

AVL hash tree

e Addition and deletion similar to AVL tree

0
0 /.\1
(s, (s,

0/ 0

(i . A1
Rotations of subtrees

AVL hash tree

e Addition and deletion similar to AVL tree
* Self balancing tree

0
0 /.\1
(s, (s,

0/ 0

(i . A1
Rotations of subtrees

AVL hash tree

Proof of presence and absence

11000 — EE—

Proof contains:

[dg,l,Z, hg]
/

N
[df, 0,1, h5] Cdlz, 0,0, h12)
RN
@1, 0,0, h—D (d7, 0,0, ha

18 / 21

AVL hash tree

Proof of presence and absence

11000 — EE—

[dg, 1,2, hg]

VAN

[df) ,O, 1,h5] [d]_Q,0,0, th]
AN
(dl, 0,0, hl) @7, 0,0, ha

Proof contains:
e hash value of sibling in path

18 / 21

AVL hash tree

Proof of presence and absence

e ———

Proot contains:
e hash value of sibling in path

* hash values of children [48,1,2, hgj
~\

a
[d5] O, 1, h5] [d]_Q, O, O, h/]_Q]
VAN
(0.0, 0)(4,0.0,)

18 / 21

AVL hash tree

Proof of presence and absence

EE—

Proot contains:
e hash value of sibling in path

* hash values of children [d& 1,2, hg]
e data on the path — <
[d&;] O, 1 ,h5][d12,0,0, hlg]

N

/
[dl, 0, 0, hl][dn 0, 0, h7]

18 / 21

AVL hash tree

Proof of presence and absence

Proot contains:

* hash value of sibling in path

* hash values of children [d& 1,2, hs]

e data on the path — <

Proof in O(log(n)) [d5 » 0,1 ,h5] [dlza 0,0, hlzj

N

/
[dl, O, O, hl][dn O, O, h7]

18 / 21

AVL hash tree

Proof of presence and absence

R

Proot contains:
e hash value of sibling in path

 hash values of children [d& 12 hs]

e data on the path — <

| PrOOf in 0(|Og(n)) [df) 9 07 1 7h5] [d127 07 07 th]
Verification: [d o i][d\o B]

* compute hashes 1,Y,U, A1 jlar,U,U, N7

e verify order on data

18 / 21

AVL hash tree

Proof of presence and absence

Proot contains:
e hash value of sibling in path

* hash values of children [dS,LQ, h8]
 data on the path — <
| Proof in O(Iog(n)) [d5 , 0,1 »h5][d12»0707 hmj
Ver|f|cat|on. [d 00 i][d\o o B]
e compute hashes e

. verify order on data

Certificate log

 AVL hash tree stores the current state

Data: id + certificate
R: Total order on id, ignore certificate

Certificate log

 AVL hash tree stores the current state

Data: id + certificate
R: Total order on id, ignore certificate

[Dimitry, cd)

CB ob, 5 CEl\a‘more, ce)
N\

CAlice, ca) CC harly, CC)

192

Certificate log

 AVL hash tree stores the current state

Data: id + certificate
R: Total order on id, ignore certificate

- ChronTree stores requests
Data: add(cert), rev(cert) + digest of AVL hash tree

Certificate log

 AVL hash tree stores the current state

Data: id + certificate
R: Total order on id, ignore certificate

- ChronTree stores requests
Data: add(cert), rev(cert) + digest of AVL hash tree

dy = add(Alice, cq), hy (h(h(dy,d2), h(d3, ds)))
do = add(Bob, cp), ho / \
ds = del(Alice), hs (h(d1,ds)) (h(ds,da))

dy = add(Alice,c), hy

AV

Certificate log

 AVL hash tree stores the current state

Data: id + certificate
R: Total order on id, ignore certificate

- ChronTree stores requests
Data: add(cert), rev(cert) + digest of AVL hash tree

di = add(Alice, ca), by <
do = add(Bob, c), hs [Alice, ca)
ds = del(Alice), hs

dy = add(Alice,c), hy

192

Certificate log

 AVL hash tree stores the current state

Data: id + certificate
R: Total order on id, ignore certificate

- ChronTree stores requests
Data: add(cert), rev(cert) + digest of AVL hash tree

d1 = add(Alice, cy), hq
dz = add(Bob, cp), ho {[Alice, ca)

ds = del(Alice), hs
dy = add(Alice,c), hy Bob, Cb)

192

Certificate log

 AVL hash tree stores the current state
Data: id + certificate

R: Total order on id, ignore certificate
- ChronTree stores requests

Data: add(cert), rev(cert) + digest of AVL hash tree

d1 = add(Alice, cy), hq
do = add(Bob, cp), ho

dy = del(Alice), hs <
d, = add(Alice, ¢, hy (Bob, ¢,)

192

Certificate log

 AVL hash tree stores the current state

Data: id + certificate
R: Total order on id, ignore certificate

- ChronTree stores requests
Data: add(cert), rev(cert) + digest of AVL hash tree

d1 = add(Alice, cy), hq
do = add(Bob, cp), ho
ds = del(Alice), hs \
dy = add(Alice,c), hy < (BOba Cb)

/.
[Alice, c@

Certificate log

Random verification

T — T

Certificate log

Random verification

d1 = add(Alice, cq), hq 1. Randomly select |
do = add(Bob, cp), hs 2. Proof of presence of di and di;+
ds = del(Alice), hs 3. Proof of addition / deletion from

dy = add(Alice,c), hy the digest of di to di
depending on the request

Certificate log

Random verification

d1 = add(Alice, cq), hq 1. Randomly select |
do = add(Bob, cp), hs 2. Proof of presence of di and di;+
ds = del(Alice), hs 3. Proof of addition / deletion from

dy = add(Alice,c), hy the digest of di to di
depending on the request

Individual verification is O(log(n)) in time |

and size

Certificate log

Random verification

d1 = add(Alice, cq), hq 1. Randomly select |
do = add(Bob, cp), hs 2. Proof of presence of di and di;+
ds = del(Alice), hs 3. Proof of addition / deletion from

dy = add(Alice,c), hy the digest of di to di
depending on the request

i

| Individual verification is O(log(n)) in time
- and size

P——— e —— e S —— —_p—— = ——

» |
2042/

Conclusion

* No trusted party

e Fully transparent

e Secure for multiple public log of certificates
 Revocation

