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Context

Most communications take place over a public network

Gmail

by Google

It is important to ensure their security
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EXIsting solution

Public key certificate: digital identity (standard X.509)
Certificate authority: VeriSign, Comodo, Go Daddy...
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Problems with existing solution

‘ Problem 2: Monopoly of the certlflcate authorlty
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CONODD. @ clobasign. \/griSign@ > 100 in Firefox

skca, pK(skca)
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No link between CAs
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State of the art

Several proposals:

* Crowd-sourcing (Perspectives, DoubleCheck)
* Pinning (TACK)
 Public Log (Certiticate Transparency, AKI, Sovereign Key)

t Log accessible to anyone, veritiable proof

Issues with public log proposals:

* Relies on trusted parties (monitors, validator, mirror)
e Single log

* No revocation

* Monopoly

8o
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Structure of Public log

Data structure

* Digest of the log
e Action: Addition, deletion, moditication, search, etc
* Proofs of any action, presence, absence, extension, etc

BOb,dbg

certeob, diog’

proofp(certsob,diog’)

proofe(diog,diog’)

Size and verificatintime of
~ proofs must be O(log(n))

| verity
proofy(certson, diog’)
and proofe(diog,diog’)
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 Based on a binary hash tree
e Data are stored on the leaves

* The digest of the data is the label of the root
* Addition on the right
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Proot of presence of some data in the digest
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Proof of extension between two digests
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* Digest in constant size (size of the hash)
* Action: addition
* Proofs of presence and extension

Why proof of extension and not addition 7

BOb, dlog

CertBob, dlog’

proofe(diog,diog’)

thounded number of crtificates | 1
~added between diog and diog’ ‘

e —— e — S— —— _
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* Digest in constant size (size of the hash)
* Action: addition
* Proofs of presence and extension

|Issues with Chrontree

* Deletion and modification of data not possible
No revocation
* No efficient proof of absence

Possible stripping attack

Possibility of adding fake certificate

Introduction of a new data structure:1
' AVL hash tree ‘
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AVL hash tree

Data structure:

* Digest in constant size

 Action: addition, deletion, modification, search
 Proofs of addition, deletion,modification
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AVL hash tree

Data structure:

* Digest in constant size

 Action: addition, deletion, modification, search
 Proofs of addition, deletion,modification

* Proofs of presence, absence

* No proof of extension

|

lmChronTreie

— e ——— - -

- AVL hash tree stores the current state
Data: certificates
- ChronTree stores requests
Data: add(cert), rev(cert) + digest of AVL hash tree
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 Based on binary search tree
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e Also based on hash tree
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AVL hash tree

' Order R on data |

 Based on binary search tree
e Satisfies the AVL property

e Also based on hash tree
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* Based on binary search tree | Order CR o]y data i
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* Also based on hash tree
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AVL hash tree

* Based on binary search tree ' Order Ron data
» Satisfies the AVL property T
* Also based on hash tree
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AVL hash tree

' Order R on data

 Based on binary search tree
e Satisfies the AVL property

e Also based on hash tree
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AVL hash tree

' Order R on data |

 Based on binary search tree
e Satisfies the AVL property

* Also based on hash tree
* The digest of the data is the hash value of the root
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AVL hash tree

e Addition and deletion similar to AVL tree
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AVL hash tree

e Addition and deletion similar to AVL tree
* Self balancing tree

0
0 /.\1
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Proof of presence and absence
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Proof of presence and absence
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AVL hash tree

Proof of presence and absence
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AVL hash tree

Proof of presence and absence

Proot contains:

* hash value of sibling in path
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AVL hash tree

Proof of presence and absence

R

Proot contains:
e hash value of sibling in path

 hash values of children [d& 12 hs]

e data on the path — <
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AVL hash tree

Proof of presence and absence

Proot contains:
e hash value of sibling in path

* hash values of children [dS,LQ, h8]
 data on the path — <
| Proof in O(Iog(n)) [d5 , 0,1 »h5][d12»0707 hmj
Ver|f|cat|on. [d 00 i ][d\o o B ]
e compute hashes e

. verify order on data
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Certificate log

 AVL hash tree stores the current state
Data: id + certificate

R: Total order on id, ignore certificate
- ChronTree stores requests

Data: add(cert), rev(cert) + digest of AVL hash tree
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Certificate log

 AVL hash tree stores the current state

Data: id + certificate
R: Total order on id, ignore certificate

- ChronTree stores requests
Data: add(cert), rev(cert) + digest of AVL hash tree

d1 = add(Alice, cy), hq
do = add(Bob, cp), ho
ds = del(Alice), hs \
dy = add(Alice,c), hy < (BOba Cb)
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Certificate log

Random verification

d1 = add(Alice, cq), hq 1. Randomly select |
do = add(Bob, cp), hs 2. Proof of presence of di and di;+
ds = del(Alice), hs 3. Proof of addition / deletion from

dy = add(Alice,c), hy the digest of di to di
depending on the request

i

| Individual verification is O(log(n)) in time
- and size
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Conclusion

* No trusted party

e Fully transparent

e Secure for multiple public log of certificates
 Revocation




