
Indistinguishability Beyond Diff-Equivalence in ProVerif

February 4, 2023

Abstract

When formalising cryptographic protocols, privacy-type properties such as strong
flavours of secrecy, anonymity or unlinkability, are often modelled by indistinguishability
statements. Proving them is notoriously more challenging than trace properties which
benefit from a well-established tool support today. State-of-the-art techniques often ex-
hibit significant limitations, e.g., consider only a bounded number of protocol sessions,
or prove diff-equivalence—a fined-grained, structure-guided notion of indistinguishability
that commonly yields unnecessarily pessimistic analyses.

In this paper, we design, implement and evaluate the first general framework for
proving indistinguishability properties, for an unbounded number of protocol sessions,
going beyond the scope of diff-equivalence. For that we relax the structural requirements of
ProVerif, a state-of-the-art tool, through a notion of session decomposition, intuitively
allowing a dynamic restructuration of the proofs. We can then verify in a modular way
various, more realistic models of indistinguishability such as may-testing equivalence, by
exhibiting for each relation a sufficient condition on ProVerif’s output ensuring that
it holds. We implement our approach into a prototype and showcase the gain in scope
through several case studies.

1 Introduction

Cryptographic protocols are distributed programs enforcing the security of sensitive commu-
nications between several heterogeneous entities. Due to their distributed nature and their
execution over untrusted networks, they exhibit complex behaviours making their analysis
prohibitively tedious. Security properties of interest commonly include trace properties such
as (weak) secrecy or authentication, benefiting today from a strong automation support. One
may typically cite the ProVerif [BSCS20] and Tamarin [BCD+19] tools, that are able to
handle full-fledged industrial protocols such as, TLS 1.3 [BBK17, CHH+17, BCW22], the 5G
standard [BDH+18] or Signal [KBB17, CGCG+18].

Some classical security notions are however modelled by more complex (hyper)properties
including indistinguishability. They take the form of equivalence relations in concurrent pro-
cess algebra such as the applied π-calculus [ABF17], and capture strong privacy-type prop-
erties, like anonymity or unlinkability. Consider for example the prototypical scenario of a
Basic Access Control protocol (BAC): reading devices at an airport interact with RFID chips
of travelers’ e-passports. We consider a process S(k) = P (k) | R(k), where P and R (left
abstract here for simplicity) are, respectively, processes modelling a passport and a reader,
that have agreed on an identity-related value k. The unlinkability of identities across multiple

1

sessions is formalised by a statement:

! new k; !S(k) ≈ ! new k;S(k) (1)

The ! (replication) models an unbounded number of copies of the subsequent process, new k
indicates a fresh value k, and ≈ is an equivalence relation modelling the indistinguishability
of two hypothetical scenarios, from the adversary’s view. Rephrasing, (1) models the impossi-
bility to observe a difference between situations where all passports are different (right-hand
side), and where some of them may interact multiple times with readers (left-hand side).
In particular, a tool-assisted proof would have to accommodate for replicated processes of
significantly different structures.

Yet, most analysis techniques for such properties are either limited to a bounded number
of copies of S as in [CKR19], or to diff-equivalence as in ProVerif, Tamarin or Maude-
NPA [SEMM14]. Diff-equivalence is a fined-grained relation relying on strong structural
assumptions on the processes to be proved equivalent, significantly hindering its application
scope. It is typically insufficient to prove unlinkability statements such as (1), except using
specialised tools dedicated to specific types of protocols [HBD19, BDM20]. Diff-equivalence
based proofs unsuccessfully attempt to statically match each (duplicated) instance of P and
R from the right process, each with a (fresh) indistinguishable instance from the left process.
Successful proofs require dynamic extensions of this argument, where this matching is different
for each execution of each instance of P and R. Such data-dependent arguments are arguably
beyond the capabilities of most protocol analysers for an unbounded number of sessions.

Contributions We extend ProVerif to support modular proofs of may-testing and ob-
servational equivalences, and their pre-orders, for an unbounded number of sessions.

1. We introduce a notion of session decomposition, inspired from symmetry reductions in the
bounded case [CKR19]. Used as a substitute to ProVerif’s internal representation of
processes, it weakens the tool’s requirements on their structure, to express coarser-grained
security relations.

2. We then adapt ProVerif’s approach—namely, converting processes into a set of Horn
clauses—to account for session decompositions. The resulting clauses are saturated by
ProVerif’s usual solver, and we exhibit sufficient conditions on the saturated output; each
ensures one relation (may-testing, observational equivalence, pre-orders...) on the initial
processes. This shows in particular the modularity of our notion of session decomposition
in that it is not tied to a specific equivalence relation.

3. We propose for each of the above-mentioned conditions a general, semantic version, as well
as a refinement better suited for automated verification. We then implement the overall
procedure and use it to successfully verify various examples escaping the current scope of
ProVerif.

Related Work Proofs of equivalence properties in security protocols roughly follow two
trends, commented below.

On the one hand, proofs for a bounded number of sessions put an emphasis on precision
and termination of the analysis at the cost of not supporting replication [CCK12, CDD17,
CKR18]. Among these, the SAT-Equiv tool may notably yield proofs for an unbounded

2

number of sessions occasionally, but also imposes syntactic restrictions on processes that
ProVerif is not subject to. We also mention [CKR19], which inspired our notion of session
decomposition: it develops symmetry-based techniques for trace equivalence that allows them
to prove efficiently unlinkability properties. Our approach is however more widely applicable,
due to our support for unbounded processes, but also through the multiple security relations
we handle. However, by being only based on sufficient conditions, our prototype is currently
unable to exhibit attack traces, i.e., to disprove equivalence.

On the other hand, for an unbounded number of sessions, most tools only support in-
distinguishability notions in the spirit of diff-equivalence, typically ProVerif [BSCS20],
Tamarin [BCD+19] or Maude-NPA [SEMM14]. Although an extension of ProVerif par-
tially relaxes the underlying structural requirements [CB13], it is subsumed by our current
approach in terms of scope. [CB13] also yields algorithmically less efficient procedures on ex-
amples where the two approaches overlap: its procedure can be seen as a static enumeration
of all potential session decompositions, followed by a tentative of proof for each of them. On
the contrary, our native integration of session decompositions makes our single-proof proce-
dure lighter to process. Other extensions allow some form of dynamic reasoning for protocols
with synchronisation [BS16]. Annotating processes with synchronisation points thus makes
proofs beyond diff-equivalence possible; this however requires manual annotations, is limited
in scope (synchronisations are prohibited under replications), and requires synchronisation
assumptions not arising in our framework.

An important related work is Ukano [HBD19], a frontend to an altered version of
ProVerif exhibiting sufficient conditions under which the decision of trace equivalence can
be reduced to a combination of diff-equivalence and trace properties. These conditions are
however only valid for specific properties of a syntactically restricted class of protocols. In
particular, although Ukano is applicable to most examples we specifically consider in this
paper, our more general and modular approach significantly broadens the technique’s scope
by not being subject to such restrictions (more details discussed in Section 7.2). The approach
has also been carried in Tamarin [BDM20] to analyse stateful protocols.

3

Contents

1 Introduction 1

2 Unlinkability As a Motivating Example 5

3 Model 7
3.1 Syntax . 8
3.2 Operational Semantics . 8
3.3 Security Properties . 10

4 Instrumentation 11
4.1 Instrumented Processes . 11
4.2 From Processes to Instrumented Processes . 12
4.3 Instrumented semantics . 13
4.4 Convergence equivalence . 15
4.5 Axioms . 18

5 Clause generation 20
5.1 Clauses for the attacker . 20
5.2 Clauses for the protocol . 21
5.3 Soundness . 23

6 Semantics Conditions for Equivalence 24
6.1 Completion of Horn clauses . 24
6.2 Session matching . 24
6.3 Falsifying conditions . 25

7 Practical Verification of Equivalences 28
7.1 Skolemisation . 28
7.2 Experiments . 31

8 Conclusion 32

Index: Correspondence with CSF’23 Conference Paper 34

A Proof of Theorem 1 37
A.1 Link Between Regular and Instrumented Semantics 37
A.2 Convergence and May Testing . 39
A.3 Convergence and Bisimilarity . 40

B Properties on occurrences 42

C Proof of Theorem 2 44

D Proofs of semantics conditions (Theorems 3 to 5) 54

E Proofs of practical verification (Theorems 6 to 8) 58

4

2 Unlinkability As a Motivating Example

We give an overview of our results by outlining a proof of unlinkability of a simplified BAC
e-passport protocol in our model. This will give an insight of the proof techniques we develop
in the subsequent technical sections.

Modelling We consider an access control protocol where a passport P communicates with
a reader R, after a preliminary chip scanning allowing the reader to retrieve a passport
secret k. Subsequent cryptographic operations are described by function symbols senc and
sdec, verifying the identity sdec(senc(x, y, z), z) → x. An expression senc(m, r, k) models the
symmetric encryption of a message m using a key k and randomness r, whereas sdec(u, k)
models the decryption of u with k. A minimal version of the BAC protocol [For04] can then
be described as follows, first in informal Alice-Bob notation:

P → R : n
R → P : senc(n, r, k) received as x

P → R : ok if sdec(x, k) = n

error otherwise

That is, P sends a freshly generated nonce n to R in clear as a challenge, and awaits as a
response an encryption of n under their shared secret k. Then, the result of the protocol (ok
or error) is output. This protocol is assumed to be carried out over an untrusted network,
compromised by an adversary that may intercept messages, but also replay, forge or inject
them. The desired unlinkability property is then:

After an arbitrary number of sessions of the protocol, the adversary cannot infer
whether a same passport took part to several of these sessions.

This security property should hold despite the adversary being able, e.g., to change the
recipient of some messages and observe the resulting final ok/error message. Formally, the
roles of P and R are represented by processes of the applied π-calculus, written:

P (k) = new n; out(c, n); in(c, x);
if sdec(x, k) = n then out(c, ok) else out(c, error)

R(k) = new r; in(d, y); out(d, senc(y, r, k)); 0

Here the 0 indicates a terminated process. The instructions in(u, x) and out(u, v) model
inputs and outputs on a communication channel u. The new n formalises the fresh generation
of a name n, unknown to the adversary until output on the channel c. The formulation of
unlinkability we consider is the equivalence Sleft ≈ Sright , with:

Sleft = ! new k; ! (P (k) | R(k))

Sright = ! new k; (P (k) | R(k))

where A | B is the parallel composition of A and B, and !A is the parallel composition of an
unbounded number of copies of A. The right side of the equivalence is a process modelling
a scenario where all sessions involve different passports, whereas the left side may involve
several times the same passports in different sessions. The equivalence relation ≈ may then
be chosen among several common choices such as observational equivalence ≈o or may-testing
equivalence ≈m to model adversarial indistinguishability.

5

Instrumentation The first step of our approach to prove Sleft ≈ Sright is to convert pro-
cesses into instrumented processes. This internal representation of ProVerif intuitively
interprets parallel processes as indexed sequences of processes. E.g., the process Sright is
translated into the form:

{{!o1[i]i Pright}} | {{!o2[i]i Rright}}

with Pright and Rright respective translations of P and R. The multiset notation {{·}} (here,
only singletons) indicates a set of parallel processes with a similar structure. Processes with
a different structure are put in different multisets separated by a | operator. This is what we
call a session decomposition in this paper. Inside these multisets, an annotated replication
!oiP can be seen as a collection of copies of P , indexed by the variable i, and uniquely identified
during the analysis by the occurrence o. In particular, Pright and Rright are mostly identical
to P and R, except that they have their private names freshly renamed and indexed by i, e.g.
n into nr[i]. The argument i indicates a dependency, expressing that nr[i] is a different fresh
name for each different copy of the process (i.e., for each instance of i). This thus makes the
new instruction superfluous. For example:

Rright = inor[i](d, y); out(d, senc(y, rr[i], kr[i])); 0

Again, the occurrence or[i] is used for making reference to the tagged instruction (here, the
input) during the analysis later. So far, most of this material exists in ProVerif; the novel
ingredient is that, when translating Sleft , we obtain a session decomposition similar to the
previous one, despite the different initial number of replications:

{{!o3[i,j]i,j Pleft}} | {{!o4[i,j]i,j Rleft}}

The process Sleft can indeed also be seen as a collection of copies of P and R, albeit for
different data dependencies. This is reflected in this session decomposition by the double
index [i, j], where i indexes to the first replication and j the second. The indexation of R is
therefore this time:

Rleft = inoℓ[i,j](d, y); out(d, senc(y, rℓ[i, j], kℓ[i])); 0

In short, instead of requiring that two equivalent processes have (syntactically) the same
structure, our analysis criterion is based on the components (multisets) of the session decom-
position, regardless of their sizes. Theorem 1 shows that instrumentation preserves process
equivalences.

Translation Into Clauses Once the session decomposition is over, the algorithm translates
the instrumented processes into Horn clauses (Section 5):

F1 ∧ · · · ∧ Fn → F

These clauses intuitively model ProVerif’s internal reasoning and include atomic formulae
of various forms. Some clauses, already present in the baseline version of ProVerif, describe
for example the adversary’s capabilities, such as:

input(x, y) ∧msg(x, z, y′, z′) ∧ y ̸= y′ → bad

6

The fact input(x, y) models that the attacker can listen on the channel x in an execution
of Sleft , and y in an equivalent execution of Sright . The clause represents the fact that the
attacker can distinguish the two executions (fact bad) when a message was sent on x in Sleft

but on a different channel y′ in Sright (fact msg(x, z, y′, z′)). Other facts ev(e, e′) indicates that
an event e occurs in Sleft , and simultaneously e′ occurs in Sright . Also, importantly, att(u, v)
indicates that the adversary is able to compute u (resp. v) using the knowledge accumulated
in Sleft (resp. Sright) by intercepting outputs. Finally, we introduce in this work novel events
repl(o) (replication events), indicating that a replication labelled with the occurrence o is
unfolded. We typically use them to express correspondences between occurrences (e.g., o3
and o1 in the example), which in turn helps capturing our notion of session decomposition
within clauses. For example, the following clause describes the execution of the first output
of P in Sleft and Sright

ev(repl(o3[i, j]), repl(o1[i
′])) → att(nl[i, j], nr[i

′])

Rephrasing, when an occurrence of the replication o3[i, j] is executed in Sleft , while o1[i
′] is

executed in Sright , the adversary learns the corresponding values of n (as they are publicly
output). Note in particular that the premise of the clause relates events occurring at different
structural levels of processes (i.e., o3 is under two nested replications, unlike o1), which is not
a natural feature of diff-equivalence.

Verification After generating all clauses, they are saturated using ProVerif’s internal
solver. When none of the saturated clauses concludes bad, we can directly conclude that
diff-equivalence holds, as in ProVerif. The key novelty of our approach is that even when
some saturated clauses conclude bad, we may still be able to prove equivalences as follows.

Intuitively, a clause H → bad indicates that there may be distinguishable executions of
Sleft and Sright that satisfy H. Conversely, the saturation procedure of ProVerif ensures
that if some executions of Sleft and Sright are distinguishable then there must exist a saturated
clause H → bad where H is satisfied by these executions (Theorem 2). Thus, to prove may-
testing inclusion ⊑m for example, it suffices to build a session matching (Section 6.2) mapping
the replication events of any execution of Sleft to the replication occurrences of Sright , that can
falsify (Section 6.3) the hypotheses H of all saturated clauses H → bad. In our example, it
means for instance mapping instantiations of repl(o3[i, j]) to adequate instantiations of o1[i

′].
In other words, our conditions implies that all executions of Sleft can be matched by an

execution of Sright that satisfy none of the hypotheses of the clauses concluding bad, which
thus entails that these two executions are not distinguishable (Theorem 3). We exhibit similar
conditions implying observational equivalence ≈o and its pre-order ⊑o (simulation). In our
implementation, we can let the prototype find the “best” (i.e., finest) proofs it can. In the
case of this example, the tool automatically shows that Sleft ⊑m Sright and Sright ⊑o Sleft .
Although not formalised by the tool as it does not compute attacks, we can show by hand
that the tool’s result is optimal, i.e., Sright ̸⊒o Sleft .

3 Model

In this section, we present the process calculus and the notions of equivalence studied in this
paper. Most of it is standard material from the theory of ProVerif.

7

3.1 Syntax

We assume a classical term algebra, that is, an infinite set of variables V, an infinite set of
names N = Npub ⊎ Nprv representing atomic values (public and private, respectively), and
a finite set of function symbols (with their arity) called a signature. Specifically, we consider
two distinct sets Fd and Fc representing, respectively, constructor symbols (used to build
messages, e.g., encryption or concatenation) and destructor symbols (representing operations
on messages that may fail, e.g., decryption). Functions, names and variables can be combined
to form expressions:

D ::= a atomic value a ∈ N ∪ V
f(D1, . . . , Dk) application f ∈ Fd ∪ Fc

fail failure

An expression is called a term when it does not contain destructors or the fail symbol, and is
then referred by the grammar tokens M,N . Terms are therefore expressions that correspond,
intuitively, to successful computations. We then consider processes modelling concurrent
programs:

P,Q ::= 0 nil

out(N,M);P output

in(N, x);P input (x ∈ V)
event(M);P event

P | Q parallel composition

!P replication

new n;P restriction (n ∈ N)

let x = D in P else Q assignment

We already discussed most of these constructions during the motivation example, at the
exception of events. Events are ignored during equivalence proofs, although they can be used
in ProVerif to specify axioms, introduced in [BCC22], that are trace properties guiding the
internal decision procedure. They are admitted during verification, but those mentioned and
introduced in this paper are (protocol-independent) properties that have been priorly proved
manually.

The assignment instruction let x = D in P else Q attempts to evaluate D and executes
P (x) with the resulting value x in case of success, or executes a default process Q in case of
failure. Assuming a symbol Equals ∈ Fd with the rewrite rule Equals(x, x) → ok, assignments
can therefore be used to encode conditionals as in the motivation example.

The notion of evaluation underlying assignments is formalised through a set of rewrite rules
ℓ → r, such as the rule sdec(senc(x, y, z), z) → x used in the motivation example. Formally,
we refer to the usual notion of substitutions σ = {M1/x1 , . . . ,

Mn /xn}, i.e., we write Mσ the
term where all syntactic occurrences of xi in M are replaced by Mi. We naturally extend the
application of a substitution to expressions, processes, etc. ProVerif then operates using
the evaluation of expressions D ⇓ U where U is either a term M or the constant fail. This
evaluation is based on a standard notion of rewriting system normalising expressions with a
call-by-value strategy (full details in Appendix ??).

3.2 Operational Semantics

The semantics of processes characterises their behaviour when executed in a hostile environ-
ment modelling an adversary controlling the communication network. It operates on config-

8

urations P,Φ, which are tuples where P is a multiset of processes modelling all processes
currently executed in parallel, and Φ is a called a frame, i.e., a substitution:

Φ = {M1/ω1 , . . . ,
Mn /ωn}

Intuitively, a frame records the knowledge obtained by the adversary by spying on outputs
sent on the communication network. An entry Mi/ωi indicates in particular that the adversary
can access the value of Mi through the handle ωi, which is a dedicated type of variable. In
particular, the following notion formalises attacker’s computations:

Definition 1 (Recipe). A recipe ξ is an expression without private names, and with no
variables except handles.

For example, a frame Φ = {senc(m,k)/ω1 ,
k /ω2} with m, k ∈ Nprv indicates that the attacker

observed, successively, senc(m, k) and k. The term m can be thus computed by the adversary
using the recipe ξ = sdec(ω1, ω2); that is, ξΦ ⇓ m. Note in particular that the decryption key
k is not used directly (as sdec(ω1, k) is not a valid recipe because it contains the private name
k), but by reference through the handle ω2. The actual semantics is then defined in Figure 1,
as a labelled transition relation

α−→ over configurations, where the label α is called an action:

• in(ξ, ζ) materialises an input fetched from the adversary, where the input term is com-
puted by the recipe ζ, and the underlying channel N is public in that it can be computed
by the adversary through recipe ξ;

• out(ξ, ω) materialises an output sent on a channel publicly computable through ξ, and
added to the adversary’s knowledge as a frame entry at handle ω;

• and finally, events make the corresponding term appear as the transition label, and
empty labels are used for miscellaneous rules without visible behaviours.

{{0}},Φ −→ ∅,Φ (Nil)

{{P | Q}},Φ −→ {{P,Q}},Φ (Par)

{{!P}},Φ −→ {{P, !P}},Φ (Repl)

{{new a;P}},Φ −→ {{P{a′/a}}},Φ if a′ ∈ Nprv ∖ names(P, P,Φ) (Restr)

{{out(N,M);P, in(N, x);Q}},Φ −→ {{P,Q{M/x}}},Φ (Comm)

{{out(N,M);P}},Φ out(ξ,ω)−−−−−→ {{P}},Φ ∪ {M/ω} if ω /∈ dom(Φ), ξΦ ⇓ N (Out)

{{in(N, x);Q}},Φ in(ξ,ζ)−−−−→ {{Q{M/x}}},Φ if ξ, ζ recipes such that ξΦ ⇓ N and ζΦ ⇓ M (In)

{{event(M);P}},Φ M−→ {{P}},Φ (Event)

{{let x = D in P else Q}},Φ −→ {{R}},Φ if R = P{M/x} if D ⇓ M ; R = Q if D ⇓ fail (Let)

P ∪Q,Φ
α−→ P ′ ∪Q,Φ′ if P,Φ

α−→ P ′,Φ′ (Cont)

Figure 1: Operational Semantics Between Configurations

9

Definition 2 (Trace). A trace T of a configuration C0 is a sequence of transitions of Figure 1

starting from C0, written T : C0
α1−→ · · · αn−−→ Cn. We may write C0

α1···αn====⇒ Cn when interme-
diary processes are not relevant. Note that in the work α1 · · ·αn, empty αi, i.e., transitions
without labels, are implicitly omitted. By extension, we may consider traces of a process P by
interpreting P as the configuration {{P}}, ∅.

3.3 Security Properties

We now define the notions of process equivalence considered in this paper. They are typically
used to model strong flavours of privacy-type properties of cryptographic protocols expressed
in our process algebra. They are intuitively built over a notion of static indistinguishability
that, intuitively, formalises that the adversary cannot compute a test that tells two given
history of observables apart. In the following, we implicitly assume that the signature includes
a symbol binary symbol Equals defined by Equals(x, x) → ok that allows the adversary to run
equality tests to violate indistinguishability. This static notion is then lifted to dynamic
behaviours through the operational semantics. For that we consider a relation over words
actions: we write

α1 · · ·αn ≡ β1 · · ·βp
if the two words α1 · · ·αn and β1 · · ·βp become identical after removing all event actions from
them. Not considering event actions in the definition of equivalences models that they are
rather annotations from the modeller than observables of the attacker. They are, instead,
convenient to express axioms, that take in this paper the form of trace properties.

Definition 3 (Observational equivalence). Observational pre-order (or simulation) ⊑o is
defined as the largest relation R over configurations such that C R C′ implies, if we write
C = P,Φ and C′ = P ′,Φ′:

1. for all recipes ξ, ξΦ ⇓ fail iff ξΦ′ ⇓ fail;

2. if C α−→ C1 then there exists C′
1 such that C′ w

=⇒ C′
1, α ≡ w, and C1 R C′

1.

Observational equivalence ≈o is defined as the largest symmetric relation R that satisfies
properties 1, 2.

The usual definition of observational equivalence is context-based but often harder to
handle in proofs. The above definition is a standard, more operational but equivalent char-
acterisation called bisimilarity [ABF17]. The following, coarser notion of equivalence, may
testing, and corresponds to the indistinguishability of sets of traces. It intuitively states for
any trace of either process, and for any computation the adversary may additionally do, an
indistinguishable sequence of actions can be taken in the other process.

Definition 4 (May testing). May testing inclusion between configurations, denoted C ⊑m C′,

holds when for all traces C w
=⇒ (P,Φ) and for all sets of recipes S, there exists a trace C′ w′

=⇒
(P ′,Φ′) such that w ≡ w′ and for all ξ ∈ S, ξΦ ⇓ fail iff ξΦ′ ⇓ fail. May testing equivalence,
denoted ≈m, is defined as ⊑m ∩ ⊒m.

10

4 Instrumentation

Recalling the motivation example, the first step of our procedure is to convert processes
into instrumented ones that record some data dependencies, and more importantly, compute
session decompositions to materialise the internal symmetries of processes.

4.1 Instrumented Processes

We introduce the set Xλ of session variables, used to index replicated data, and are instanti-
ated into session identifiers. Names are thus now represented by name patterns

n = n[a1, . . . , ak]

where each ai is called an argument pattern, that is either a term (representing a prior input),
or a session variable or identifier (representing a replication in scope). Public names a are im-
plicitly interpreted as name patterns a[]. We define below the grammar of such instrumented
processes.

P,Q ::= 0 inn(N, x);P

P | Q {{!n1
ã1
P1; . . . ; !

nk
ãk
Pk}}

event(M);P let x = D in P else Q
out(N,M);P

The major addition compared to regular processes is the session decomposition {{!n1
ã1
P1; . . . ; !

nk
ãk
Pk}}.

Intuitively, it gathers processes P1, . . . , Pk of same structure, whose replicated copies will be
indexed by the session variables in ã1, . . . , ãk, recalling the motivating example. This notation
extends to non-replicated processes Pi with ãi = ∅.

The task of proving the equivalence of two processes P and Q rephrases, intuitively, to
matching the observables (inputs and outputs) of P with those of Q. This is done mostly
syntactically in ProVerif while, for session decompositions:

P = {{!n1
ã1
P1; . . . ; !

nk
ãk
Pk}} Q = {{!m1

b̃1
Q1; . . . ; !

mℓ

b̃ℓ
Qℓ}}

our approach may match any observable from a replicated copy of Pi with an equivalent
one from a copy of Qj . Roughly, the current procedure of ProVerif can only handle, in
comparison, the case k = ℓ and may only match Pi with Qi. ProVerif also has a requirement
that P and Q have the same structure, that we also extend to our context. In the above case,
this (recursively) means that all Pi, Qj have the same structure, and that there are the same
ordinal number of sessions on each side (non replicated processes, i.e., ãi = ∅, counting for
1, and replicated processes, i.e., ãi ̸= ∅, for +∞). In the following definition, we refer in
particular as #ãi ∈ {1,+∞} to the corresponding number of sessions, also using the natural
extension of addition to N ∪ {+∞}.

Definition 5 (Control-flow equivalence). Control flow equivalence ≈cf is the smallest relation
on instrumented processes such that:

• {{!n̄1
ã1
P1, . . . , !

n̄k
ãk
Pk}} ≈cf {{!m̄1

b̃1
Q1, . . . , !

m̄l

b̃l
Ql}} if for all i, j, Pi ≈cf Qj and

∑k
i=1#ãi =∑l

j=1#b̃j;

• let any instructions α[P1, . . . , Pn] and β[Q1, . . . , Qn] of the same type (nil, input, output,
event, parallel, let; thus n ∈ J0, 2K). If for all i ∈ J1, nK, Pi ≈cf Qi, then α ≈cf β.

11

4.2 From Processes to Instrumented Processes

We now detail how to transform a regular process into an instrumented one. Up to alpha
renaming, we assume without loss of generality that processes bind names and variables at
most once (by in or new instructions). Most of the instrumentation process intuitively consists
of tagging inputs and replications by fresh occurrences to identify them, and to record the
tags in scope in the replication’s arguments. Such a procedure already exists in ProVerif
as detailed in [BCC22], and is given in Figure 2. We take below a particular focus on the
new material (session matchings). The transformation takes the form of a ternary relation
between processes P ⇓ã Q, where P is a process, Q is an instrumented process and ã is a
sequence of argument patterns intuitively recording the data dependencies in scope. Typically,
replications are instrumented as follows:

!P ⇓ã {{!o[ã,i]{i} P ′}}

where, for some fresh occurrence o and session variable i ∈ Xλ, P ⇓ã·i P
′. This means that i

serves as a fresh placeholder for indexing the various copies of P . It is added to the record ã
for the next steps of the instrumentation ⇓ã·i, and to the dependencies of the fresh occurrence
label o. The tagging is similar for inputs:

in(N, x);P ⇓ã ino[ã|λ](N, x);P ′

with some fresh o and if we have P ⇓ã·x P ′, and ã|λ refers to the sequence ã with input
terms removed, thus keeping only session variables/identifier. Only inputs and replications
(i.e., the sources of unboundedness) need to be tagged with occurrences, meaning that ⇓ã is
extended to most other process constructions (inputs, outputs, events, let) in the natural way,
without modification. The only exception is the parallel operator which, in the same way as
replication, has to produce a session matching:

P | Q ⇓ã {{!o[ã]∅ P ′}} | {{!o
′[ã]

∅ Q′}}

with some fresh o, o′ and if we have P ⇓ã P ′, Q ⇓ã Q′. This session matching is “blank” at
the moment, that is, it does not record any potential structural symmetries between P and
Q.

0 ⇓ã 0
out(N,M);P ⇓ã out(N,M);P ′ if P ⇓ã P

′

in(N, x);P ⇓ã ino[ã|λ](N, x);P ′ if P ⇓ã·x P ′ and o ∈ Nin fresh

event(M);P ⇓ã event(M);P ′ if P ⇓ã P
′

new n;P ⇓ã P ′ if P{n′[ã]/n} ⇓ã P
′ for some fresh name pattern n′

let x = D in P else Q ⇓ã let x = D in P ′ else Q′ if P ⇓ã P
′ and Q ⇓ã Q

′

P | Q ⇓ã {{!o[ã]∅ P ′}} | {{!o
′[ã]

∅ Q′}} if P ⇓ã P
′, Q ⇓ã Q

′, and o, o′ ∈ N are fresh

!P ⇓ã {{!o[ã,i]{i} P ′}} if P ⇓ã·i P
′, and o ∈ N , i ∈ Xλ fresh

Figure 2: Transformation into Instrumented Processes

Computing symmetries is managed by the second part of the transformation, taking the
form of three factorisation rules ⇝ that normalise the structure of session decompositions.

12

We recall the intuition that P | Q models two arbitrary parallel processes P and Q, while
{{!n̄ãP, !m̄b̃ Q}} carries additional information about structural symmetries (i.e., P ≈cf Q). These
factorisation rules intuitively merge parallel processes into multisets when structural symme-
tries are identified. All rules are to be understood up to associativity and commutativity of
the parallel operator, and are applied to any subprocesses of the instrumented process:

{{!n̄ã (P | Q)}} ∪ S ⇝ {{!n̄ãP}} | {{!n̄ãQ}} | S
{{!n̄ã{{!

n̄i
ãi
Pi}}ni=1}} ∪ S ⇝ {{!n̄i

ã∪ãiPi}}ni=1 | S

{{!n̄ãP}} ∪ S | {{!m̄
b̃
Q}} ∪ S′ ⇝ {{!n̄ãP, !m̄b̃ Q}} ∪ S ∪ S′

if P ≈cf Q

The first two rules make replication and parallel operators collapse, to present them
under a compact normalised form that facilitates the search for structural symmetries. Note
however that these two operations technically break priorly established symmetries, which
is why applying them replaces the multiset union (∪) by a regular parallel composition (|).
On the contrary, the last rule exhibits symmetries, and records them by merging session
decompositions whose base processes P,Q are control-flow equivalent.

Definition 6 (Instrumentation). Given a process P , we write JP Ki to refer to an instrumen-
tation of P , i.e., an instrumented process such that P ⇓∅⇝

∗ JP Ki ̸⇝.

Example 1. We already illustrated in the motivation example how our notion of session de-
composition helped treating more processes as control-flow equivalent in comparison with the
usual approach of ProVerif. One step further, two processes whose syntax are significantly
different, e.g., (!P) | Q | (! new n; !R) and !S, have instrumentations that may effectively be
control-flow equivalent, when those of P,Q,R and S are.

4.3 Instrumented semantics

On single processes We now adapt the operational semantics to instrumented processes.
Intuitively, it is a decision-oriented version of the operational semantics: in addition to the
explicit replication labels, the attacker’s operations are also represented explicitly, facilitating
their encoding into Horn clauses for decisional purposes. As such, the semantics operates on
instrumented configurations P,A,Λ, where P is a multiset of instrumented processes, A is a
set of terms representing the attacker’s knowledge and Λ is a set of name patterns tracking
unfolded replications. The semantics is formalised in Figure 3.

For example Rule I-App evidences that M is computable by the adversary, and adds it
to the knowledge base A. The adversary may also introduces its own (fresh) constants in
computations, which take the form of name patterns b0[λ], with b0 a fixed (but fresh) name
and λ a session identifier, through Rule I-Gen. Some terms M,N ∈ A may then later be
used by, e.g., Rules I-In and I-Out. One other important rule is I-Repl handling both
replication and parallel composition, spawning a copy of a process with a fresh occurrence. In
case of a non-replicated process, i.e., when ã = ∅, the last condition notably prevents it from
being replicated more than once. Finally, we also mention that the rule for inputs notably
triggers a precise event pre(o,M); some internal axioms of ProVerif make references to
such precise events to guide, and thus improve the precision of, the decision procedure. They
are, in this paper, manually-proved trace properties that are protocol-independent. We use in
particular a set of so-called precise axioms, described and implemented in [CCT18, BCC22].

13

{{0}},A,Λ −→i ∅,A,Λ (I-Nil)

{{P | Q}},A,Λ −→i {{P,Q}},A,Λ (I-Par)

{{{{!oãP}} ∪M}},A,Λ
repl(oσ)−−−−−→i {{Pσ, {{!oãP}} ∪M}},A,Λ ∪ {oσ}

if dom(σ) = ã, img(σ) ⊆ N, oσ ̸∈ Λ (I-Repl)

{{let x = D in P else Q}},A,Λ −→i {{R}},A,Λ
with R = {{P{M/x}}} if D ⇓ M and R = Q if D ⇓ fail (I-Let)

{{out(N,M);P, ino(N, x);Q}},A,Λ
pre(o,M)−−−−−→i {{P,Q{M/x}}},A,Λ (I-Comm)

{{out(N,M);P}},A,Λ −→i {{P}},A ∪ {M},Λ if N ∈ A (I-Out)

{{ino(N, x);Q}},A,Λ
pre(o,M)−−−−−→i {{Q{M/x}}},A,Λ if N,M ∈ A (I-In)

{{event(M);P}},A,Λ
M−→i {{P}},A,Λ (I-Event)

∅,A,Λ −→i ∅,A ∪ {M},Λ
if M1, . . . ,Mn ∈ A, f/n ∈ Fc ∪ Fd and f(M1, . . . ,Mn) ⇓ M (I-App)

∅,A,Λ −→i ∅,A ∪ {b0[λ]},Λ
with b0 a fixed name not appearing in P or Q, and b0[λ] ̸∈ A, λ session identifier (I-Gen)

P ∪Q,A,Λ
α−→i P ′ ∪Q,A′,Λ′

if P,A,Λ
α−→i P ′,A′,Λ′ (I-Cont)

Figure 3: Instrumented Semantics on Configurations

They formalise, intuitively, injectivity properties following from the freshness of occurrences,
here o. For example, one such axiom [CCT18] intuitively states that if a same trace T contains
two events ev = pre(o,M) and ev ′ = pre(o,M ′), then M = M ′.

We then define a notion of instrumented traces. It comes with a weaker variant that
executes replicated inputs right after they are unfolded; this intuitively does not induce a loss
of generality when constructing equivalence proofs, while giving more information to guide
the analysis.

Definition 7 (Instrumented trace). A sequence of transitions C0
ℓ1−→i . . .

ℓn−→i Cn is called an

instrumented trace. We also write C ℓ−→wi C′ (weak transition) when:

• either C ℓ−→i C′ using any rule except I-Repl, or I-Repl if the replicated process does
not start with an input;

• otherwise ℓ = ℓ1 · ℓ2 and C ℓ1−→i C′′ ℓ2−→i C′ where C ℓ1−→i C′′ is derived by rule I-Repl and

C′′ ℓ2−→i C′ is the application of the rule I-In or I-Comm using the input at the start of

the process replicated in C ℓ1−→i C′′.

We write wtrace(C) the set of −→wi-traces of C, and wrtrace(C) its more permissive variant
where the last transition of the trace may be an arbitrary −→i transition.

The connection between instrumented traces and regular traces is formalised in Lemma 6
in Appendix A.1.

14

On biprocesses In fact, to prove equivalence, ProVerif operates internally on biprocesses,
that intuitively describe the joint execution of two processes to be proved equivalent. Their
semantics is intuitively a straightforward extension of the instrumented semantics ensuring
that the two paired processes follow the same execution flow. Formally:

Definition 8 (Biconfiguration). A biconfiguration is a tuple C2 = P2,A2,Λ2 where P2 is a
multiset of pairs of instrumented processes, A2 is a set of pairs of terms and Λ2 is a set of
pairs of pattern names. We say that C2 is well-formed when for all (P,Q) ∈ P2, we have
P ≈cf Q, and initial when it additionally verifies: Λ2 = ∅, A2 = {(a[], a[]) | a ∈ Npub} and
all occurrence names in P2 appear at most once.

The main difference with ProVerif’s analogue is that our more permissive notion of
control-flow equivalence ≈cf , through the modelling of session decompositions as unordered
multisets, makes the well-formedness condition much less restrictive. We define the projection
functions:

proji(P2) = {{Pi | (P1, P2) ∈ P2}}

and, analogously, proji(A2), proji(Λ
2), proji(C2). The semantics is then given by a transition

relation
ℓ−→i2 , where ℓ is a pair of (possibly empty) events of the instrumented semantics,

resulting in bitraces. The semantics is formalised in Figure 4
Moreover, we will need later on to distinguish replications followed by an input and repli-

cations followed by any other processes. As such, we split the set N! into two distinct infinite
sets N!i and N!o and request that in a (bi)configuration C, any instance of a replication !oãP
should ensure that o ∈ N!i if P starts with an input and o ∈ N!o otherwise.

4.4 Convergence equivalence

Finally, similarly to the analogue notion of ProVerif for proving diff-equivalence [Bla09], we
introduce an notion of convergence cast to our more general setting.

Definition 9 (Convergence). We say that a biconfiguration C = P,A,Λ converges, denoted
C↓↑, when

• if (i) P = P ′ ∪ {{(out(N,M);P, out(N ′,M ′);P ′), (ino(L, x);Q, ino
′
(L′, x′);Q′)}}, or (ii)

(L,L′) ∈ A and either P = P ′ ∪ {{(out(N,M);P ; out(N ′,M ′);P ′)}} or P = P ′ ∪
{{(ino(N, x);P, ino

′
(N ′, x′);P ′)}} then

N = L iff N ′ = L′

Any communication that can be done by the left process can also be done by the right
one, and conversely.

• if (M1,M
′
1), . . . , (Mn,M

′
n) ∈ A, f/n ∈ Fd then

f(M1, . . . ,Mn) ⇓ fail iff f(M ′
1, . . . ,M

′
n) ⇓ fail

The attacker does not observe any difference between the left and right sides. This is
similar to static equivalence as defined in [ABF17].

15

{{(0, 0)}},A2,Λ2 −→i2 ∅,A2,Λ2 (I2-Nil)

{{(P | Q,P ′ | Q′)}},A2,Λ2 −→i2 {{(P, P ′), (Q,Q′)}},A2,Λ2 (I2-Par)

{{({{!oãP}} ∪M, {{!o′ã′P ′}} ∪M′)}},A2,Λ2 (repl(oσ),repl(o′σ′))−−−−−−−−−−−−→i2 (I2-Repl)

{{(Pσ, P ′σ′), ({{!oãP}} ∪M, {{!o′ã′P ′}} ∪M′)}},A2,Λ2 ∪ {(oσ, o′σ′)}
if dom(σ) = ã, dom(σ′) = ã′, img(σ) ∪ img(σ′) ⊆ N,
oσ ̸∈ proj0(Λ

2), o′σ′ ̸∈ proj1(Λ
2)

{{(out(N,M);P, out(N ′,M ′);P ′), (ino(N, x);Q, ino
′
(N ′, x′);Q′)}},A2,Λ2 (I2-Comm)

(pre(o,M),pre(o′,M ′))−−−−−−−−−−−−−→i2 {{(P, P ′), (Q{M/x}, Q′{M ′
/x′})}},A2,Λ2

{{(let x = D in P else Q, let x′ = D′ in P ′ else Q′)}},A2,Λ2 −→i2 {{(R,R′)}},A2,Λ2 (I2-Let)
with (R,R′) = (P{M/x}, P ′{M ′

/x′}) if D ⇓ M

and D′ ⇓ M ′, and (R,R′) = (Q,Q′) if D ⇓ fail and D′ ⇓ fail

{{(out(N,M);P, out(N ′,M ′);P ′)}},A2,Λ2 −→i2 {{(P, P ′)}},A2,Λ2 ∪ {(M,M ′)}
if (N,N ′) ∈ A2 (I2-Out)

{{(ino(N, x);Q, ino
′
(N ′, x′);Q′)}},A2,Λ2 (pre(o,M),pre(o′,M ′))−−−−−−−−−−−−−→i2

{{(Q{M/x}, Q′{M ′
/x′})}},A2,Λ2

if (N,N ′), (M,M ′) ∈ A2 (I2-In)

{{(event(M);Q, event(M ′);Q′)}},A2,Λ2 (M,M ′)−−−−−→i2 {{(Q,Q′)}},A2,Λ2 (I2-Event)

∅,A2,Λ2 −→i2 ∅,A2 ∪ {(M,M ′)},Λ2 (I2-App)
if (M1,M

′
1), . . . , (Mn,M

′
n) ∈ A, f/n ∈ Fc ∪ Fd and f(M1, . . . ,Mn) ⇓ M

and f(M ′
1, . . . ,M

′
n) ⇓ M ′

∅,A2,Λ2 −→i2 ∅,A2 ∪ {(b0[λ], b0[λ])},Λ2 if (b0[λ], b0[λ]) ̸∈ A2 (I2-Gen)

P2 ∪Q2,A2,Λ2 α−→i2 P2′ ∪Q2,A2′,Λ2′ if P2,A2,Λ2 −→i2 P2′,A2′,Λ2′ (I2-Cont)

Figure 4: Instrumented Semantics on (Well-Formed) Biconfigurations

• if P = P ′ ∪ {{(let x = D in P else Q, let x′ = D′ in P ′ else Q′)}} then

D ⇓ fail iff D′ ⇓ fail

The left process cannot take the “else” branch if the right process takes the “then” branch,
and conversely.

By extension, we say that a bitrace is convergent if all of its intermediary biconfigurations are
convergent.

The convergence property on a biconfiguration guarantees that any action possible on the
left process can be applied on the right process, and vice-versa. This is formalised in the
following lemma, that can be obtained through a straightforward inspection of the rules of
Figures 3 and 4 under the assumption of convergence.

Lemma 1. Let C be a well formed convergent biconfiguration and i ∈ {0, 1}. If proji(C)
ℓi−→i

C′
i, then there exist ℓ1−i and a well-formed biconfiguration C′ such that C (ℓ0,ℓ1)−−−−→i2 C′ and

proji(C′) = C′
i.

16

Proof. Direct from Definition 9 and the semantics in Figures 3 and 4.

As we are now focusing on bitraces and biconfigurations, we define “equivalences” based
on convergent bitraces by considering a predicate π on configurations such that if C is the
initial biconfiguration ({{(P,Q)}},A, ∅) then π(C) would imply P ≈ Q. For example, a natural
definition to define the predicate for observational equivalence would require that π(C) implies
that C is convergent and that if proj0(C) −→i C′

1 then C −→i2 C′, proj0(C′) = C′
1 and π(C′) for

some C′ (and similarly with proj1(C)).
However, in Definition 3, we consider the weak equivalence, i.e. in property 2, one tran-

sition can be matched with any number of transitions. When working with biconfigurations
and the transition relation −→i2 , we force a strong observational equivalence, which can be
too strong specifically when applying the rule I-Repl and I2-Repl as the choice of how to
match a process may depend on the first action of the replicated process.

Therefore, to define our predicates, we consider the weak transition relations
ℓ−→wi and

ℓ−→wi2 where C ℓ−→wi C′ holds when, intuitively, all replications of processes P starting with an
input must execute this input right away after a copy of P is unfolded. Formally:

• C ℓ1−→i C1
ℓ2−→i C′ with ℓ = ℓ1 · ℓ2, C

ℓ1−→i C1 is the application of the rule I-Repl and

C1
ℓ2−→i C′ is:

1. either the application of the rule I-In on the process replicated in C ℓ1−→i C1;
2. either the rule I-Comm where the input corresponds to the process replicated in

C ℓ1−→i C1;
3. an empty step (i.e., C′ = C1 and ℓ2 = ϵ) if the replicated process does not start

with an input.

• C ℓ−→i C′ for all rules besides I-Repl.

We apply a similar definition for
ℓ−→wi2 .

We define wrtrace(C0) as the set of traces T = C0
ℓ1−→i C1 . . .

ℓn−→i Cn such that for all i ∈ N,
if ℓi = repl(o) and o ∈ N!i then Ci−1

ℓi.ℓi+1−−−−→wi Ci+1. Additionally, we define wtrace(C0) as the
set of traces T = C0

ℓ1−→i C1 . . .
ℓn−→i Cn in wrtrace(C0) such that if ℓn = repl(o) then o ̸∈ N!i.

By definition, we have:
wtrace(C0) ⊂ wrtrace(C0) ⊂ trace(C0)

Typically, the traces of wtrace(C0) are built by only applying the transition relation
ℓ−→wi.

The traces wrtrace(C0) additionally allow the final transition step to be a replication that

unfold a process starting with an input (which would not be possible by using
ℓ−→wi as the

input would need to be executed too).
Given a biconfiguration C, we define similarly the sets wtrace2(C) and wrtrace2(C). We

can now define new predicates based on convergent traces that are sound for the equivalences
in Section 3.3.

Definition 10 (May-testing convergence). We say that a well formed biconfiguration C is
may-testing convergent, denoted π≈m(C), when for all i ∈ {0, 1} and for all T ∈ wtrace(proji(C)),
there exists a convergent bitrace T ′ ∈ wtrace2(C) such that proj1−i(T

′) = T . We say that C is
pre-order may-testing convergent, denoted π⊑m(C), when the property is only required to hold
for i = 0.

17

Definition 11. Observational convergence equivalence on well formed biconfigurations, de-
noted π≈o, is defined as the largest predicate π such that π(C) implies that C converges and,

for all i ∈ {0, 1}, if proji(C)
ℓi−→wi C′

i then there exists a transition bi-step of the form

C (ℓ0,ℓ1)−−−−→wi2 C′, with proji(C′) = C′
i and π(C′). We say that C is pre-order convergent, denoted

π⊑o(C) when the predicate π(C′) is only required to hold for i = 0.

The soundness of Definitions 10 and 11 is given in our first main result.

Theorem 1 (Equivalence and convergence). Let P,Q be two processes. We also let A =
{(a[], a[]) | a ∈ Npub}, and the biconfiguration C = ({{(JP Ki, JQKi)}},A, ∅). If C is well formed
then for all relations R ∈ {≈o,⊑o,≈m,⊑m}, πR(C) implies P R Q .

A detailed proof of this result can be found in Appendix A.

4.5 Axioms

ProVerif recently introduced the possibilities to declare axioms to help it prove diff equiv-
alence [BCC22]. Typically, axioms are properties that ProVerif will assume to hold on all
bitraces and apply them when saturating the set of Horn clauses. Of course, to ensure the
soundness, one needs to prove on the side that the declared axioms actually holds for any
bitraces of the protocol. In this section, we prove some properties on the events labeling the
transition relations of the semantics that will be considered as axioms by ProVerif.

Our properties focuses on traces and bitraces for the weak transition relations
ℓ−→wi and

ℓ−→wi2 . As such, we consider a new event functions repli in Fe. Typically, when the transition

C repl(o)·pre(o′,M)−−−−−−−−−−→wi C′ occurs, corresponding to a replication followed by an input, the event
repli will record the replication occurrence o as well as the input term M , i.e. repli(o,M).
We say that the event function repli is the input event function.

Definition 12 (Event satisfaction). Let C be a configuration. Let T ∈ wrtrace(C) be a trace

C0
ℓ1−→i . . .

ℓn−→i Cn and let i ∈ N. We define the satisfaction relation ⊢ of an event ev on
T at step i, denoted T, i ⊢ ev, that holds when either ev = ℓi; or ev = repli(o,M) and

Ci−2
repl(o)·pre(o′,M)−−−−−−−−−−→wi Ci.

Given C be a biconfiguration, a bitrace T ∈ wrtrace2(C) and i ∈ N, we define the satisfac-
tion relation on bievents (ev , ev ′), denoted T, i ⊢2 (ev , ev ′), that holds when proj0(T), i ⊢ ev
and proj1(T), i ⊢ ev ′.

We may write T ⊢ ev and T ⊢2 (ev , ev ′) when the step is unnecessary. Formally, they
correspond to ∃i ∈ N.T, i ⊢ ev and ∃i ∈ N.T, i ⊢2 (ev , ev ′).

Notice that the event repli(o,M) can only be satisfied it corresponds to a weak transition
ℓ−→wi. Moreover, when T, i ⊢ repli(o,M) then T, i − 1 ⊢ repl(o). In particular, repl(o) and
repli(o,M) are called replication events, while the former is more specifically called a strict
replication event. We denote by Ev! (resp. Ev!i) the set of strict replication events (resp.
of replication events of the form repli(o,M)). Moreover, we say that o is the replication
occurrence of ev , or replication name pattern, denoted orepl(ev).

We can now state several properties in the following lemma (proof can be found in Ap-
pendix B).

18

Lemma 2. Let C be an initial instrumented configuration. For all i, j ∈ N, for all T ∈
wrtrace(C),

• if T, i ⊢ pre(o1,M) and T, j ⊢ pre(o2, N); or T, i ⊢ repli(o1,M) and T, j ⊢ repli(o2, N)
then

1. o1 = o2 if and only if i = j

2. i = j implies M = N

• if T, i ⊢ ev and T, j ⊢ ev ′ with ev , ev ′ ∈ Ev! then

1. orepl(ev) = orepl(ev ′) implies i = j

2. i = j implies ev = ev ′

• if T ⊢ ev and T ⊢ ev ′ with ev , ev ′ ∈ Ev!, orepl(ev) = o[ã] and orepl(ev) = o[b̃] then
ã|λ = b̃|λ implies ã = b̃.

Relying on Lemmas 2, we can define similar properties on bitraces that focus separately
on the left and right sides of events. We can also define properties that link the left and right
sides of replication events. In particular, replication names on the left side of the biconfig-
uration cannot be matched with any replication names on the right side. Given an initial
biconfiguration, we can compute the set of replication names on the right (resp. left) side a
replication name on the left (resp. right) side should be matched with. This is formalized as
follows. Given a process P with distinct occurrence names, we denote by names !(P) the set of
occurrence names occurring in a matching composition, i.e. o ∈ names !(P) when !oãP

′ occurs
in P . We augment this notation to initial instrumented configurations C, denoted names !(C).

Definition 13 (Potential matching). Let P,Q two processes such that P ≈cf Q. We define
the set pm(P,Q), called the set of potential matching replication occurrence names in P and
Q, as the set of pairs of replication occurrence names such that:

pm(0, 0) = ∅
pm(out(N,M);P, out(N ′,M ′);P ′) = pm(P, P ′)

pm(ino1(N, x);P, ino
′
1(N ′, x′);P ′) = pm(P, P ′)

pm(M,M′) = {(o, o′) | !oãP ∈ M∧ !o
′

ã′P
′ ∈ M′} ∪

⋃
!oãP∈M

⋃
!o

′
ã′P

′∈M′ pm(P, P ′)

pm(event(ev);P, event(ev ′);P ′) = pm(P, P ′)

pm(P1 | P2, P
′
1 | P ′

2) = pm(P1, P
′
1) ∪ pm(P2, P

′
2)

pm(let x = D in P1 else P2, let x
′ = D′ in P ′

1 else P ′
2) = pm(P1, P

′
1) ∪ pm(P2, P

′
2)

Given an initial instrumented biconfiguration C = ({{(P,Q)}},A, ∅), we denote by pm(C) the
set pm(P,Q).

We also sometimes need to refer to the arguments of an occurrence replication names in
(bi)configuration. Hence, given o ∈ N!, we denote by arC(o), ar

λ
C(o), ar

b
C(o) respectively the

numbers |ã|, |ã|λ| and |b̃| when !
o[ã]

b̃
P occurs in C (recall the all occurrence names are distinct

in the initial instrumented configuration so there can be only one possible value).

Example 2. Coming back to our running example, we have pm(CBAC) = {(o3, o1); (o4, o2)},
arλC(o1) = arλC(o2) = 1 and arλC(o3) = arλC(o4) = 2.

19

Given an initial instrumented biconfiguration C, we also define a partial order relation
between replication names, denoted o ≺C o′ when o′ is in the scope of o in the processes of C.
We denote by o ⪯C o′ when o ≺C o′ or o = o′. We extend this notation to replication name
patterns such that o[ã] ≺C o′[ã′] when o ≺C o′ and ã|λ is a prefix of ã′|λ. Finally, we sometimes
assimilate o[ã] with the name o and write (o[ã], o′[ã′]) ∈ pm(C) instead of (o, o′) ∈ pm(C).

Lemma 3 (Consistency). Let C be an initial instrumented biconfiguration. For all T ∈
wrtrace2(C), if T, i ⊢2 (ev0, ev1) and T, j ⊢2 (ev ′0, ev

′
1) with ev0, ev1, ev

′
0, ev

′
1 ∈ Ev! ∪ Ev!i then

• (orepl(ev0), orepl(ev1)) ∈ pm(C)

• orepl(ev0) ≺C orepl(ev ′0) if and only if orepl(ev1) ≺C orepl(ev ′1)

The proof of this lemma can be found in Appendix B. Intuitively, Lemma 3 states that
all labels of the semantics rules always contain matching replication names with one another
and preserve the scope of replication names.

Using the relation ≺C , we can also extend Lemma 1 to indicate which replication name
patterns can selected when applying the transition rule I2-Repl (the proof of the following
lemma can be found in Appendix B).

Lemma 4. Let C0 be an initial convergent instrumented biconfiguration. Let C0
tr
=⇒i2 C1 =

P,A,Λ. Let i ∈ {0, 1}.
Assume proji(C1)

repl(oi[ãi])−−−−−−→i C′
2. For all o1−i such that k = arλC0(o1−i), for all λ1, . . . , λk ∈

N, if (o0, o1) ∈ pm(C0) and for all (o′0[ã
′
0], o

′
1[ã

′
1]) ∈ Λ,

• o′i[ã
′
i] ≺C0 oi implies o′1−i[ã

′
1−i] ≺C0 o1−i[λ1, . . . , λk]

• o′1−i[ã
′
1−i|λ] ̸= o1−i[λ1, . . . , λk]

then C1
(repl(o0[ã0]),repl(o1[ã1]))−−−−−−−−−−−−−−−→i2 C2 for some ã1−i with proji(C2) = C′

2 and ã1−i|λ = λ1, . . . , λk.

5 Clause generation

5.1 Clauses for the attacker

Below we display the clauses modelling the capabilities of the attacker. They are adapted
from [BCC22]. We use the notations for clauses (ev, att...) as in Section 2. We consider the
set of public names A0 in the initial instrumented biconfiguration C = ({{(P,Q)}},A0, ∅).

For each a ∈ A0, att(a[], a[]) (RInit)

att(b0[i], b0[i]) (RGen)

att(fail, fail) (RFail)

For each function h, for all h(U1, . . . , Um) → U || ϕ in def(h),

for all h(U ′
1, . . . , U

′
m) → U ′ || ϕ′ in def(h),

att(U1, U
′
1) ∧ . . . ∧ att(Um, U ′

m) ∧ ϕ ∧ ϕ′ → att(U,U ′)

(Rf)

msg(x, y, x′, y′) ∧ att(x, x′) → att(y, y′) (Rl)

20

att(x, x′) ∧ att(y, y′) → msg(x, y, x′, y′) (Rs)

att(x, x′) → input(x, x′) (RIn)

input(x, y) ∧msg(x, z, y′, z′) ∧ y ̸= y′ → bad (RIBad1)

input(y, x) ∧msg(y′, z, x, z′) ∧ y ̸= y′ → bad (RIBad2)

att(x, fail) → bad (RBad1)

att(fail, x) → bad (RBad2)

We will denote CA(C) = {(RInit), (RGen), (RFail), (Rf), (Rl), (Rs), (RIn), (RIBad1),
(RIBad2), (RBad1), (RBad2)}.

5.2 Clauses for the protocol

The clauses modelling the protocols P and Q are generated by the translation [[|P,Q|]]Hr,
displayed below, where H is a conjunction of facts and formulas and r is either a term or □.

Intuitively, H collects conditions that need to be satisfied for P and Q to be executed,
and r = diff[o1, o2] indicates that P and Q have been spawned with occurrence replications
o1 and o2 respectively. In particular, it should be recorded in H that o1 and o2 should be
matched together during an equivalence proof. This is done through the facts F!i(r, x, x

′) and
F!(r) whose values are ⊤ when r = □ and otherwise when r = diff[o1, o2]:

F!i(r, x, x
′) = ev(repli(o1, x), repli(o2, x

′))
F!(r) = ev(repl(o1), repl(o2))

Note that we consider that the variables in processes P and Q are bound only once. We
freshly renamed them if it is not the case before generating the clauses.

[[|0, 0|]]Hr = ∅

[[|M,M′|]]Hr =
⋃

!
o1
ã1

P1∈M

⋃
!
o2
ã2

P2∈M′

[[|P1, P2|]]Hdiff[o1, o2]

[[|P | Q,P ′ | Q′|]]Hr = [[|P, P ′|]]H□ ∪ [[|Q,Q′|]]H□

[[|ino(N, x);P, ino
′
(N ′, x′);P ′|]]Hr =

[[|P, P ′|]](H ∧msg(N, x,N ′, x′) ∧ ev(pre(o, x), pre(o′, x′)) ∧ F!i(r, x, x
′))□

∪ {H ∧ F!(r) → input(N,N ′)}

[[|out(N,M);P, out(N ′,M ′);P ′|]]Hr = [[|P, P ′|]](H ∧ F)□ ∪ {H ∧ F!(r) → msg(N,M,N ′,M ′)}

[[|event(ev);P, event(ev′);P ′|]]Hr = [[|P, P ′|]](H ∧ F!(r) ∧ ev(ev, ev′))□

[[|let x = D in P else Q, let x′ = D′ in P ′ else Q′|]]Hr =⋃
{[[|Pσσ′, P ′σσ′|]](Hσ ∧ F!(r)σ ∧ ϕ)□ | (D,D′) ⇓′ ((M,M ′), σ, ϕ) ∧ σ′ = {M/x,

M ′
/x′}}

∪
⋃

{[[|Qσ,Q′σ|]](Hσ ∧ F!(r)σ ∧ ϕ)□ | (D,D′) ⇓′ ((fail, fail), σ, ϕ)}

∪ {Hσ ∧ F!(r)σ ∧ ϕ → bad | (D,D′) ⇓′ ((fail,M), σ, ϕ)}
∪ {Hσ ∧ F!(r)σ ∧ ϕ → bad | (D,D′) ⇓′ ((M, fail), σ, ϕ)}

21

Given an initial instrumented biconfiguration C = ({{(P,Q)}},A0, ∅), we will denote by
CP(C) the set of Horn clauses [[|P,Q|]]⊤□∪CA(C). Furthermore, given a bitrace T , we define
the set of Horn clauses Ce(T) = {→ ev(ev, ev′) | T, i ⊢2 (ev, ev′) and i ∈ N}.

Example 3. For our running example, we translate the instrumented processes {{!o3[i,j]i,j Pleft}} |
{{!o4[i,j]i,j Rleft}} and {{!o1[i]i Pright}} | {{!o2[i]i Rright}}. Let us look more closely at the passport

components, i.e. the translation [[|{{!o3[i,j]i,j Pleft}}, {{!
o1[i]
i Pright}}|]]⊤□.

Recall that by instrumentation, Pleft and Pright are the processes P (kℓ[i]) and P (kr[i
′])

where the inputs have been associated with the occurrences o′ℓ[i, j] and o′r[i
′], and the name

n has been replaced by nℓ[i, j] and nr[i
′] respectively.

The translation [[|{{!o3[i,j]i,j Pleft}}, {{!
o1[i′]
i′ Pright}}|]]⊤□ will then record the replication occur-

rences o3[i, j] and o1[i
′]. As the first actions in the processes Pleft and Pright are outputs, it

results:
F! → msg(c, nℓ[i, j], c, nr[i

′])

with F! = ev(repl(o3[i, j]), repl(o1[i
′])) being propagated in the hypotheses of the remaining

clauses. When translating the second actions, i.e., the inputs ino
′
ℓ[i,j](c, x) and ino

′
r[i

′](c, x′),
only the precise event is added in the hypothesis and not the occurrence fact F!i as such fact
is only added when translating the first actions after a session matching. This yields the
following hypothesis H to be propagated:

F! ∧msg(c, x, c, x′) ∧ ev(pre(o′ℓ[i, j], x), pre(o
′
r[i

′], x′))

Finally, as in ProVerif, going through the conditional branch, we compute the success and
failure conditions before translating the final output actions, yielding the following clauses:

Hσ1σ2 → msg(c, ok, c, ok)
Hσ1 ∧ ∀z′.x′ ̸= senc(z′, kr[i

′]) → msg(c, ok, c, error)
Hσ2 ∧ ∀z.x ̸= senc(z, kℓ[i]) → msg(c, error, c, ok)
H ∧ ∀z′.x′ ̸= senc(z′, kr[i

′]) ∧ ∀z.x ̸= senc(z, kℓ[i, j])
→ msg(c, error, c, error)

with σ1 = {senc(z,kℓ[i])/x} and σ2 = {senc(z′,kr[i′])/x′}.
As mentioned, we also consider the clauses CA(C2) describing the attacker capabilities.

They include in particular:

→ att(c, c) → att(ok, ok) → att(error, error)
msg(x, y, x′, y′) ∧ att(x, x′) → att(y, y′)
att(x, y) ∧ att(x, y′) ∧ y ̸= y′ → bad

The first three clauses represents the fact that the attacker knows the initial constants. The
fourth clause indicates that if the attacker knows a channel, it can learn the messages sent
over it. Finally, the fifth clause models the fact that by deducing twice the same messages
on the left side but different messages on the right side, the attacker can distinguish the two
traces, i.e. the bitrace is not convergent. In our example, it translates the fact that a bitrace
satisfying the conditional in the passport on one side side but failing it on the other side will
lead to a non-convergent bitrace. Note that the fifth clause comes from the clauses Rf by
application of the destructor Equals.

22

5.3 Soundness

In this work, we use the saturation procedure of the recent release of ProVerif that applies
axioms, lemmas and restrictions when saturating the set of Horn clauses. In our framework,
though we do not generate exactly the same set of Horn clauses (we in fact generate a more
general set of clauses), we do not consider here user defined lemmas, axioms and restrictions
thus we can simplify the definitions, theorems and proofs in [] to fit our needs.

First, let us recall the notions of subsumption of Horn clauses and derivation of facts

Definition 14. Let H1∧ϕ1 → C1 and H2∧ϕ2 → C2 be two clauses. We say that H1∧ϕ1 → C1

subsumes H2∧ϕ2 → C2, denoted (H1∧ϕ1 → C1) ⊒ (H2∧ϕ2 → C2), when there exists σ such
that (i) either C1σ = C2 or C1 = bad (ii) H1σ ⊆ H2 (where H1 and H2 are seen as multiset
of facts and ⊆ is the multiset inclusion) (iii) ϕ2 |= ϕ1σ.

We can now define the notion of derivation and satisfaction of a derivation w.r.t. a trace.

Definition 15. Let C be a set of clauses. Let F be a closed fact and a step τ . A derivation
D of F from C is a finite tree defined as follows:

• its nodes (except the root) are labelled by clauses R ∈ C.

• its edges are labelled by ground facts.

• if the tree contains a node labelled by R with one incoming edge labelled by F0 and n
outgoing edges labelled by F1, . . . , Fn then R ⊒ F1 ∧ . . . ∧ Fn → F0.

• the root has one outgoing edge, labelled by F .

The following theorem states that the fact bad is derivation from the set of generated
Horn clauses when there is a non convergent bitrace. Considering that we change the set
of Horn clauses generated w.r.t. the ones generated in [BCC22], we prove this theorem in
Appendix C. Note that its proof is heavily inspired by the proof of [BCC22, Lemma 11].

Theorem 2 (Soundness Initial Clauses). Let C be an initial instrumented biconfiguration.
For all T ∈ wrtrace2(C), if T does not converge then there exists a derivation of bad from
CP(C) ∪ Ce(T).

The saturation procedure, that we denote saturate(C), preserves derivation of bad as stated
in the following theorem from [BCC22].

Proposition 1. [[BCC22, Theorem 4]] Let C be an initial instrumented biconfiguration. For
all T ∈ wrtrace2(C), if there exists a derivation of bad from CP(C) ∪ Ce(T) then there exists
a derivation of bad from saturate(CP(C)) ∪ Ce(T).

Corollary 1 (Soundness Saturation). Let C be an initial instrumented biconfiguration. For
all T ∈ wrtrace2(C), if T does not converge then there exists a clause H ∧ ϕ → bad in
saturate(CP(C)) and a substitution σ such that σ |= ϕ and for all ev(ev, ev′) ∈ H, there exists
i ∈ N such that T, i ⊢2 (ev, ev′)σ.

23

Proof. Using Proposition 1 and theorem 2, we obtain that if T does not converge then there
exists a derivation of bad from saturate(CP(C)) ∪ Ce(T). By definition of a derivation (Def-
inition 15), we conclude by noticing that the root of the derivation is labelled by a clause
concluding bad, i.e. H ∧ ϕ → bad. By definition of a derivation, we do have a substitution σ
such that σ |= ϕ. Moreover, since Ce(T) are the only clauses concluding events, we conclude
by definition of Ce(T).

Example 4. If C2
BAC is an initial biconfiguration corresponding to the processes of the running

example, the set saturate(CP(C2
BAC)) contains two clauses deriving bad:

C1 = ev(repl(o3[i1, j1]), repl(o1[i])) ∧
ev(repli(o4[i2, j2], nl[i1, j1]), repli(o2[i], nr[i])) ∧
H1

pre ∧ i1 ̸= i2 → bad

C2 = ev(repl(o3[i, j]), repl(o1[i1])) ∧
ev(repli(o4[i, j

′], nl[i, j]), repli(o2[i2], nr[i1])) ∧
H2

pre ∧ i1 ̸= i2 → bad

The first clause corresponds to the case where on Sright , the nonce nr[i] of the reader was sent
to the correct passport, as indicated by repli(o2[i], nr[i]), thus ok will be output. On the left
side however, repli(o4[i2, j2], nl[i1, j1]) and i1 ̸= i2 indicate that the nonce nl[i1, j1] generated
by a reader having the key kl[i1] was sent to a passport with the key kl[i2]. Since i1 ̸= i2, the
keys are different hence error will be output. The second clause is the dual of the first one,
i.e., the test will succeed on Sleft but fail on Sright . Here, H

1
pre and H2

pre contains the precise
events (omitted). The sets of initial and saturated clauses can be displayed by running our
implementation [Ano23b] on the file running example.pv

6 Semantics Conditions for Equivalence

In this section, we provide several tests on saturated clauses for proving the equivalence
predicates and their pre-order defined in Section 4.4, that are π≈o , π⊑o , π≈m and π⊑m .

6.1 Completion of Horn clauses

Looking at the initial generation of Horn clauses from a protocol, we have some structural
properties on the events occurring in the clauses that are intuitively the direct translation of
Lemmas 2 and 3. For instance, in a clause H → F , if the fact ev(repl(o0[ã0]), repl(o1[ã1]))
occurs in H and there are o′0 ≺CI o0 then there must exists in H a fact ev(repl(o′0[ã

′
0]),

repl(o′1[ã
′
1])) with (o′0, o

′
1) ∈ pm(CI) and o′i[ã

′
i] ≺CI oi[ãi] for i = 1, 2.

In ProVerif, the saturation procedure may break this invariant by deleting some events
(as deleting events is always sound). However, thanks to Lemmas 2 and 3, we can always
reconstruct the missing events to retrieve the property stated above. Thus, in the rest of this
technical report, we assume that such property holds.

6.2 Session matching

We now arrive to the main tool for matching sessions. Recall that to prove may-testing,
we need to show that for all traces T in proj0(C2), we can find a corresponding convergent

24

bitrace T 2 of C2 with proj0(T
2) = T . In particular, for every replication event satisfied

by T , e.g. T ⊢ ev = repl(o[ã]), there must be a corresponding ev ′ = repl(o′[ã′]) such that
T 2 ⊢2 (ev , ev ′). Intuitively, a session matching is a function that associates each such event
ev with a corresponding occurrence o′[ã′]. However, ã′ may not only contain session identifiers
but also terms corresponding to previous inputs. To avoid reasoning on the messages input in
proj1(T

2), we strip ã′ from these input terms, i.e. ã′|λ, to only preserve the session identifiers.
In such a case, we say that o′[ã′|λ] is a pure replication pattern. We denote by P! the set of
ground pure replication pattern.

Definition 16 (Session matching). Let C = ({{(P,Q)}},A, ∅) be an initial instrumented bi-
configuration. We say that a partial mapping ρ from ground events in Ev! ∪ Ev!i to P! is
a session matching from P to Q when for all ev , ev1, ev2 ∈ dom(ρ), if orepl(ev) = o[ã],
orepl(ev1) = o1[ã1] and orepl(ev2) = o2[ã2] then

• ρ(ev) = o′[ã′] implies o ∈ names !(P), (o, o′) ∈ pm(C) and arλC(o
′) = |ã′|;

• orepl(ev1) ≺C orepl(ev2) if and only if ρ(ev1) ≺C ρ(ev2).

• ev1 ∈ Ev!, ev2 ∈ Ev!i and orepl(ev1) = orepl(ev2) implies ρ(ev1) = ρ(ev2)

• ρ(ev1) = ρ(ev2) implies o1 = o2 and ã1|λ = ã2|λ

Example 5. Coming back to our running example, consider a trace T ∈ proj0(C2) that executes
a single passive session between the passport and the reader in Sleft , the trace T would satisfy
three events: ev1 = repl(o3[1, 1]) (unfolding of Pleft), ev2 = repl(o4[1, 1]) (unfolding of Rleft),
and ev3 = repli(o4[1, 1], nl[1, 1]) (unfolding of Rleft with nl[1, 1] the message input by Rleft

and sent by Pleft).
A session matching from Pleft to Pright could be the function ρ such that ρ(ev1) = o1[1]

and ρ(ev2) = ρ(ev3) = o2[1] which would also correspond to a single session between the
passport and the reader in Sright .

6.3 Falsifying conditions

Following Definition 10, we need to prove that for all traces T of proj0(C), there exists a
convergent bitrace T ′ of C such that proj0(T

′) = T . To prove that such a bitrace T ′ exists, we
will show that we can build a bitrace such that none of the clauses in saturate(CP(C)) with
bad as conclusion would have hypotheses matching T ′. Thanks to Corollary 1, this will allow
us to conclude that T ′ is convergent. From a clause C = (H → bad) of saturate(CP(C)), we
generate two falsifying conditions, denoted falsify0(C) and falsify1(C), intuitively indicating
sufficient conditions for a bitrace T ′ with proj0(T

′) (resp. proj1(T
′)) satisfying proj0(H)

(resp. proj1(H)) to ensure that proj1(T
′) (resp. proj0(T

′)) does not satisfy proj1(H) (resp.
proj0(H)).

Given a formula ϕ and a set of variables X, we denote by ϕ|X the formula where we replace
all variables of ϕ that are not in X by fresh names; thus only keeping variables from X. Since
formulas in clauses are only composed of disequalities, we have the following property:

For all substitutions σ, σ |= ϕ implies σ |= ϕ|X

In particular, we will use ϕ|Xλ
, where Xλ is the set of session identifier variables, in order to

obtain formulas that constraint only session identifier variables.

25

Additionally, given a biclause C = H ∧ϕ → bad, we write vars i(C) the set of variables in
the i-th projection of H, i.e. vars(proji(H)).

Definition 17. Let i ∈ {0, 1}. Given a fact F and a formula ϕ, we define the i-matching
conditions of F with ϕ, denoted falsifyi(F, ϕ), as the pair (M, ϕ′) such that if F = ev(ev0, ev1)
is a replication bi-event with orepl(ev1−i) = o1−i[ã] then

M = {(ev i, ϕ|fv(ev i), y)} with y fresh and ϕ′ = (y ̸= o1−i[ã|λ])

otherwise M = ∅ and ϕ′ = ⊥.

We extend the notion of first and second matching conditions of a Horn clause as follows.

Definition 18. Let C be the clause C = (F1 . . . ∧ Fn ∧ ϕ → bad). Let i ∈ {0, 1}. Let
us denote by falsifyi(Fj , ϕ) = (Mj , ϕj) for j ∈ {1, . . . , n}. The i-matching conditions of C,
denoted falsifyi(C), is defined as the tuple (H,M, ϕ′) where

• Xk =
⋃n

j=1 fv(projk(Fj)) for k = 0, 1

• H = proji(F1) ∧ . . . ∧ proji(Fn) ∧ ϕ|Xi

• M =
⋃n

j=1Mj

• ϕ′ = ∀X1−i \ Xi.(ϕ1 ∨ . . . ∨ ϕn ∨ ¬ϕ|Xλ∪X1−i
)

Definition 19 (Falsifying condition). Let C = (ϕ∧H ∧
∧n

i=1 Fi → bad) be a clause such that
the Fis are replication events and H contains any other facts. Let k ∈ {0, 1}. The k-falsifying
conditions of C, falsifyk(C), is (Ω, ϕ′) where:

• Ω is the function [projk(Fi) 7→ yi]
n
i=1 where the yis are fresh distinct variables

• ϕ′ = ∀x̃1−k \ x̃k.(¬ϕ|x̃1−k|λ
∨
∨n

i=1 yi ̸= oi[ãi|λ])

where orepl(proj1−k(Fi)) = oi[ãi] for i = 1 . . . n and x̃j = varsj(C) for j = 0, 1

Intuitively, when falsify0(C) = (Ω, ϕ), the function Ω can be seen as a session matching
on open terms that contain variables. The formula ϕ represents sufficient conditions for the
hypotheses of the biclause C to be falsified. Therefore, any session matching that is an
instantiation of Ω and that verifies ϕ will falsify the hypotheses of C.

Example 6. Consider the clauses C1 and C2 from Example 4. We have falsify0(C1) = (Ω1, ϕ1)
where:

• Ω1(repl(o3[i1, j1])) = y1

• Ω1(repli(o4[i2, j2], n
′[i1, j1])) = y2

• ϕ1 = ∀i.(y1 ̸= o1[i] ∨ y2 ̸= o2[i])

and falsify0(C2) = (Ω2, ϕ2) where

• Ω2(repl(o3[i, j])) = y1

• Ω2(repli(o4[i, j
′], n′[i, j])) = y2

26

• ϕ2 = ∀i1, i2.(y1 ̸= o1[i1] ∨ y2 ̸= o2[i2] ∨ i1 = i2)

Using Corollary 1, we can show that a session matching agreeing with a bitrace T and
that falsifies all hypotheses of clauses deriving bad is necessary convergent:

Definition 20 (Falsification). Let C = ({{(P0, P1)}},A, ∅) be an initial biconfiguration. Let
k ∈ {0, 1}. Let T ∈ wrtrace(projk(C)). Let C = H → bad be a clause with falsifyk(C) = (Ω, ϕ).

We say that T and a session matching ρ from Pk to P1−k satisfies falsifyk(C), denoted
T, ρ ⊢cs falsifyk(C) when for all substitutions σ, if T ⊢ Hσ and for all ev ∈ dom(Ω), evσ ∈
dom(ρ) and Ω(ev)σ = ρ(evσ) then σ |= ϕ.

Lemma 5 (Convergence criterion). Let C = ({{(P0, P1)}},A, ∅) be an initial instrumented
biconfiguration. Let Csat = saturate(CP(C)). Let i ∈ {0, 1}. Let ρ be a matching mapping
from Pi to P1−i. Let T ∈ wrtrace2(C).

If the following properties hold:

1. for all ev0, ev1 ∈ Ev!∪Ev!i, T ⊢2 (ev0, ev1) and orepl(ev1−i) = o[ã] implies ev i ∈ dom(ρ)
and ρ(ev i) = o[ã|λ]

2. for all C = (H → bad) ∈ Csat, proji(T), ρ ⊢cs falsifyi(C)

then T converges.

Proof. We prove the lemma by contradiction. Hence let us assume that T does not converge.
By Corollary 1, we know there exists a clause C = (H ∧ ϕ → bad) in saturate(CP(C)) and
a substitution σ such that σ |= ϕ and for all ev(ev0, ev1) ∈ H, T ⊢2 (ev0σ, ev1σ). By
hypothesis, proji(T), ρ ⊢cs falsifyi(C) holds. In particular, let us show how to build σ′ that
satisfies the hypothesis of Definition 20.

Let us denote H = H ′ ∧ F1 ∧ . . . ∧ Fn with Fis the replication events. Let falsifyi(C) =
(Ω, ϕm). We denote Hm = proji(H ∧ ϕ) and Xi = vars i(C) Moreover, by definition, for all
ev ∈ dom(Ω), if Ω(ev) = y and ϕev = ϕ|vars(ev) then there exists ev(ev0, ev1) ∈ H such that
ev = ev i. Therefore, T ⊢2 (ev0σ, ev1σ) and by construction of Hm, we have proji(T) ⊢ Hmσ.
By item 1 of our hypothesis, we deduce that if ev i ∈ Ev! ∪ Ev!i and orepl(ev1−i) = o[ã] then
ev i ∈ dom(ρ) and ρ(ev i) = o[ã|λ].

We define σ′ = σ ∪ {y 7→ ρ(evσ) | ev ∈ dom(Ω) ∧ y = Ω(ev)}. First, notice that σ |= ϕ
implies σ |= ϕXi

and so σ′ |= ϕXi
. Moreover, as we already proved that proji(T) ⊢ Hmσ,

we deduce that proji(T) ⊢ Hmσ′. Let ev ∈ dom(Ω) with Ω(ev) = y and ϕev = ϕ|vars(ev), if
ev ∈ Ev! ∪ Ev!i then by definition of σ′, we have that evσ′ ∈ dom(ρ) and yσ′ = ρ(evσ′).

Since proji(T), ρ ⊢cs falsifyi(C) holds, we deduce that σ′ |= ϕm. Let us look at how ϕm is
built:

ϕm = ∀X1−i \ Xi.(ϕ1 ∨ . . . ∨ ϕn ∨ ¬ϕ|X1−i|λ
)

where for all j ∈ {1, . . . , n}, ϕj = yi ̸= oi[ãi|λ] with orepl(proj1−i(Fk)) = ok[ãk] for k = 1 . . . n
and x̃j = varsj(C) for j = 0, 1.

Notice that the free variables of ϕm are included in Xi ∪ {y1, . . . , yn}. However, dom(σ′)
contains all variables in ϕ1 ∨ . . . ∨ ϕn ∨¬ϕ|X1−i|λ

. Thus, σ′ |= ϕm implies σ′ |= ϕ1 ∨ . . . ∨ ϕn ∨
¬ϕ|X1−i|λ

. But σ |= ϕ and so by definition of σ′, we have σ′ |= ϕ and so σ′ |= ϕ|X1−i|λ
. Hence,

σ′ |= ϕ1 ∨ . . . ∨ ϕn. However, we also know that when ϕj ̸= ⊥, ϕj = (yj ̸= o[ãj |λ]). But by

item 1 of our hypotheses and by construction of σ′, yjσ
′ = o[ãj |λ] which would imply that

σ′ |= ⊥, hence a contradiction. We therefore conclude that T converges.

27

Main results Lemma 5 is the core lemma that allows us to prove the different predicates.
In the next three theorems, we consider CI = ({{(P,Q)}},A, ∅) an initial biconfiguration and
Cbad
sat the restriction of saturate(CP(CI)) to clauses deriving bad.

Theorem 3 (May-testing preorder). If for all T ∈ wtrace(proj0(CI)), there exists a session
matching ρ from P to Q such that:

• {ev ∈ Ev! ∪ Ev!i | T ⊢ ev} ⊆ dom(ρ)

• for all C ∈ Cbad
sat , T, ρ ⊢cs falsify0(C)

then π⊑m(CI) holds.

Theorem 4 (Observational preorder). If there exists a session matching ρ from P to Q such
that:

• dom(ρ) = {ev ∈ Ev!o ∪ Ev!i | T ⊢ ev ∧ T ∈ wtrace(proj0(CI))}

• for all T ∈ wtrace(proj0(CI)), if ρ′ = ρ ∪ [repl(o) 7→ ρ(ev) | T ⊢ repli(o,M) = ev] then
for all C = (H → bad) ∈ Csat, T, ρ

′ ⊢cs falsify0(C)

then π⊑o(CI) holds.

Theorem 5 (Observational equivalence). If there exists two matching mapping ρ0 and ρ1
from P to Q and Q to P respectively such that for all i ∈ {0, 1},

• dom(ρi) = {ev ∈ Ev! ∪ Ev!i | T ⊢ ev ∧ T ∈ wtrace(proji(CI))}

• for all T ∈ wtrace(proji(CI)), for all C = (H → bad) ∈ Csat, T, ρi ⊢cs falsifyi(C)

• for all ev0 ∈ dom(ρ0), for all ev1 ∈ dom(ρ1), if orepl(ev0) = o0[ã0] and orepl(ev1) =
o1[ã1] then o0[ã0|λ] = ρ1(ev1) iff o1[ã1|λ] = ρ0(ev0)

then π≈o(CI) holds.

7 Practical Verification of Equivalences

7.1 Skolemisation

To prove the equivalences by relying on Theorems 3 to 5, we need to generate session match-
ings falsifying the hypotheses of all biclauses deriving bad. Although these session matchings
may concretely depend on the considered traces, such dependencies are tedious to capture in
practice. We therefore implement a stronger but simpler condition where, given a biclause
C and its falsifying condition falsify(C) = (Ω, ϕ), we build one session matching satisfying
falsify(C) for any instantiation of dom(Ω). In fact, if we denote dom(Ω) = {
evi}ni=1 with yi = Ω(
evi), the satisfiability of falsify(C) can intuitively be interpreted as a first-order formula:

∀ev1. . . . ,∀evn.∃y1. . . . ,∃yn.ϕ

Building on this intuition, we will get rid of existential quantifiers via a Skolemisation process
formalised below. To that end, we consider an additional set of name Ns that will be used as
Skolem functions.

28

Definition 21 (Skolemisation). Let C2 be an initial biconfiguration. Let C = (H ∧ϕ → bad)
be a biclause. Let i ∈ {0, 1}. Assume that falsifyi(C) = (Ω, ϕ′). We say that a substitution
σ is a Skolemisation of falsifyi(C) when dom(σ) = img(Ω), ϕ|varsi(C) |= ϕ′σ and for all
ev , ev ′ ∈ dom(Ω),

• if orepl(ev) = oi[ã] then

Ω(ev)σ = o1−i[s1[ã1], . . . , sk[ãk]]

with (o0, o1) ∈ pm(C2), k = arλC2(o1−i), s1, . . . , sk ∈ Ns and ã1, . . . , ãk only contain
subterms of ev

• orepl(ev) ⪯C2 orepl(ev ′) iff Ω(ev)σ ⪯C2 Ω(ev ′)σ

Note that given a biclause concluding bad, there is only a finite number of possible Skolemi-
sations of falsifyi(C) (modulo renaming of the names from Ns). Similarly, in the following
theorems, we will need to test the existence of skolemisation substitutions for each clause in
Csat deriving bad that satisfy some properties. As Csat is also finite, the number of tuple
of skolemisation substitutions is also finite (modulo renaming of the names from Ns). Our
implementation typically compute all these possible skolemisation substitutions and attempt
to verify the conditions of Theorems 6 to 8.

Example 7. Coming back to Example 6, we can consider the following Skolemisation substi-
tutions σ1 and σ2 of falsify(C1) and falsify(C2) respectively:

• σ1 = {y1 7→ o1[s1[i1, j1]]; y2 7→ o2[s2[i2, j2, i1, j1]]}

• σ2 = {y1 7→ o1[s3[i, j]]; y2 7→ o2[s3[i, j]]}

where s1, s2, s3, s4 ∈ Ns. Notice that |= ϕ1σ1 and |= ϕ2σ2.

Our theorems also relies on a simplification function of Horn clauses used in the saturation
procedure of ProVerif (see [BCC22, Section 3.2.5]) that, given a clause C, either C ↓ returns
a set of simpler clauses or ⊥. The details of this function are out of the scope of this paper
and we only use its following property: for all clauses C = (H → bad), if C ↓ = ⊥ then for
all traces T of the initial configuration, for all substitutions σ, T ̸⊢ Hσ. That is, no trace can
satisfy the hypotheses of the clause.

In the next three theorems, we consider an initial biconfiguration CI = ({{(P,Q)}},A, ∅)
and Cbad

sat the restriction of saturate(CP(CI)) to clauses deriving bad. Moreover, we denote
by same(ev0, ev1) the pair of events (ev ′0, ev

′
1) = (repl(orepl(ev0)), repl(orepl(ev1))) when

ev i = repl(o) and ev1−i = repli(o
′,M) for some i = 0, 1; and we have (ev ′0, ev

′
1) = (ev0, ev1)

otherwise.

Theorem 6 (May-testing preorder). If for all C ∈ Cbad
sat , we can associate a skolemisation

substitution σC of falsify0(C) such that for all C0, C1 ∈ C (C0, σC0 and C1, σC1 are renamed
such that they have distinct variables) with falsify0(Ci) = (Ωi, ϕi) and H ′

i = proj0(Hi), for all
ev i ∈ dom(Ωi) for i = 0, 1, we have:

1. if (ev ′0, ev
′
1) = same(ev0, ev1), α = mgu(ev ′0, ev

′
1) then:

(H ′
0 ∧H ′

1 ∧ Ω(ev0)σC0 ̸= Ω(ev1)σC1 → bad)α↓ = ⊥

29

2. if α = mgu(Ω(ev0)σC0 ,Ω(ev1)σC1) then:

(H ′
0 ∧H ′

1 ∧ orepl(ev0)|λ ̸= orepl(ev1)|λ → bad)α↓ = ⊥

then π⊑m(CI) holds.

Theorem 7 (Observational preorder). If for all C ∈ Cbad
sat , we can associate a skolemisation

substitution σC of falsify0(C) such that for all Ci = (Hi∧ϕ′
i → bad) ∈ Cbad

sat (taking Ci and σCi

renamed) with falsify0(Ci) = (Ωi, ϕi), for all ev i ∈ dom(Ωi) with Φi = ϕ′
i|vars(ev i)

for i = 0, 1,
we have:

1. if (ev ′0, ev
′
1) = same(ev0, ev1), α = mgu(ev ′0, ev

′
1) then:

(Φ0 ∧ Φ1 ∧ Ω(ev0)σC0 ̸= Ω(ev1)σC1 → bad)α↓ = ⊥

2. if α = mgu(Ω(ev0)σC0 ,Ω(ev1)σC1) then:

(Φ0 ∧ Φ1 ∧ orepl(ev0)|λ ̸= orepl(ev1)|λ → bad)α↓ = ⊥

then π⊑o(C) holds.

In both theorems, the first condition intuitively verifies that a concrete event cannot
be associated to two different replication patterns (otherwise the session matching we build
would not be a function). The second condition verifies that the session matching we build
is injective (as required by the fourth bullet point in Definition 16).

Note that the two theorems only differ on the clauses given to the simplification function.
For may-testing, we only need to build one session matching for each trace T ; hence, the
events in the hypotheses of the clauses C0, C1 can be assumed to be satisfied by T . On the
contrary, for the observational pre-order, we need to build one session matching that covers
all traces T . Hence, the hypotheses of the clauses C0, C1 can only be assumed to be satisfied
by two possibly different traces T0, T1, respectively. As the events in the hypotheses of C0, C1

are not satisfied by the same trace, we cannot give them as arguments to the simplification
function—which explains why it only receives formulae as arguments in Theorem 7.

The last theorem shows how we prove observational equivalence. Contrarily to may-testing
and observational pre-order where we relied on skolemisation, we require a stronger property
that is a bijection between the replication occurrences of the two initial processes.

Theorem 8 (Observational equivalence). If there exists a bijection β0 from the occurrence
replication names of P to the ones of Q (we denote β1 its inverse) such that for all i ∈ {0, 1},
for all oi, o

′
i ∈ dom(ρi),

1. βi(oi) = o1−i implies (o0, o1) ∈ pm(C) and arλCI (o0) = arλCI (o1)

2. oi ⪯CI o′i if and only if βi(oi) ⪯CI βi(o
′
i)

and for all C = (H ∧ ϕ → bad) ∈ Cbad
sat such that we have falsifyi(C) = (Ω, ϕ′),

3. if σ = {Ω(ev) 7→ βi(o)[ã|λ] | ev ∈ dom(Ω) ∧ orepl(ev) = o[ã]} then ϕ|varsi(C) |= ϕ′σ.

then π≈o(C) holds.

30

7.2 Experiments

Building on Theorem 6, we implemented a prototype for verifying may-testing. The source
code is available in [Ano23b]. We fully reuse the specification language of ProVerif. Equiva-
lence between two processes can be queried with the following command.

equ iva l ence P Q

To activate our new feature, we added a new setting equivalenceRelation that can take five
possible values: may−testing, simulation, observational, diff−equivalence (default value) and
best. For example, may-testing can be queried by the following command.

s e t equ iva l enceRe l a t i on = may−t e s t i n g .

When set to diff−equivalence, ProVerif will proceed as usual, that is, it will attempt to merge
the two processes P and Q into a biprocess and prove diff-equivalence on it. When set to best,
ProVerif will attempt to prove the strongest equivalence among observational, simulation and
may-testing. On the running example, ProVerif yields the following results.

RESULT May−t e s t i n g equ iva l ence between proce s s 1 and proce s s 2 i s t rue .
RESULT (but Process 2 s imulated by proce s s 1 i s t rue .)

Table 1 displays the benchmarks we performed on several protocols from the literature.
First, we included a couple of toy examples showcasing the may-testing, observational preorder
and observational equivalence, as well as the lighter structural restrictions required by our
approach compared to the baseline approach of ProVerif. We also verified the protocols
included in ProVerif’s distribution as sanity checks to ensure that our new algorithm does
not induce a drop in expressivity and performance for previously provable protocols.

Second, our experiments include protocols such as BAC [For04] (various properties not
limited to the minimal model of our motivation example), Hash-Lock [JW09], LAK [vDR08],
PACE [BFK09, BDFK12], Helios [CGLM17], Feldhofer [FDW04]. Most of these models were
taken from the Ukano tool that we compare against [HBD19].

Finally, we also show that our approach surpasses Ukano on, e.g., unlinkability proofs in
a simplified standard TLS handshake. Indeed, Ukano requires that:

1. the protocol must be a two-party protocol between an initiator I and a responder R;

2. the processes of the initiator and responder cannot use the full range of ProVerif
syntax, e.g., else-branches can only be null or restricted outputs of constants;

3. equivalences are syntactically restricted to be of the form:

!new k; (!Pi |!PR) ≈ !new k; (Pi | PR)

4. the protocol must admit an appropriate idealisation function and must satisfy two
sufficient conditions called well-authentication and frame opacity.

These conditions prevent Ukano to handle TLS. Indeed, a TLS handshake starts with a
negotiation phase where the server and the client must agree on the TLS protocol version,
the Diffie-Hellman (DH) groups and other cryptographic algorithms. During this phase, the
server may send an HelloRetryRequest depending on the DH groups and key shares the
client sent. Such requests subsequently affect the control flow of the protocol, which cannot

31

be modelled with the restriction on else-branches discussed in Item 2. Besides, even if one
considered a simpler version of TLS where Server and Client would have already agreed on
the handshake parameters, the conditions 1 and 3 combined limit the security guarantees. In
TLS, the identity of the client is typically its long term public key. In the above equivalence
statements, k would thus plays the role of the private key associated to the public key of
the client. Thus, Ukano could only prove unlinkability of TLS without revealing the public
keys of the clients (as outputting them in PI or PR would trivially break unlinkability). Our
approach can typically handle such models using a third outputting process in parallel. In
fact, our experiment showed that on our simplified TLS models, even when considering no
negotiation phase and no public key revealed, Ukano still fails to prove the two conditions
discussed in Item 4.

Limitations To go beyond our simplified TLS models, we also tried to apply our proto-
type on the ProVerif models of [BCW22] which also proves unlinkability and anonymity of
TLS clients. Their model describes in extensive details the protocol and consider some TLS
extensions such as ECH and Pre-Shared Keys. Their proof is based on diff-equivalence but
relies heavily on complex restrictions and manual reasoning that is, in our opinion, out of
reach of standard ProVerif users. As such, with our prototype, we aimed to provide a fully
automatic proof of client unlinkability that do not rely on such complex reasoning. However,
our procedure showed a theoretical limitation as the TLS-ECH model in [BCW22] relies on
global states such as tables to encode the Pre-Shared Keys. Although we do not prevent the
use of tables, as soon as the protocol need to desynchronise their access, our procedure fails
to show equivalence. Such problems also occur when the protocol relies on desynchronised
private channels (e.g., BAC with a private channel to distribute the key between reader and
passport). In practice, the TLS-ECH model in [BCW22] also raised issues by its size (sev-
eral thousand lines of code) and our prototype could not complete the verification even after
48H of computation. There was already a bottleneck in the instrumentation and the clause
generation.

8 Conclusion

We introduced new techniques to automatically verify process equivalences. As state-of-the-
art tools for unbounded number of sessions are limited to the verification of diff-equivalence,
our work is the first that is able to prove coarser-grained equivalences such as similarity and
may-testing equivalence on syntactically unrestricted processes. We provided semantically
sound conditions for proving these equivalences based on the set of saturated Horn clauses
generated by ProVerif. We show how we satisfy these conditions in practice and imple-
mented an extension of the tool.

Our work opens several directions for future work but, beyond those already discussed in
the experimental section, one seems to be particularly interesting. One key hurdle (notably
still pending even in the released version of ProVerif) is the handling of trace restrictions
in equivalence proofs. In the context of may-testing, this would mean proving:

For all traces T0 of P verifying φ0, there exists an equivalent trace T1 of Q verifying
φ1.

where φ0, φ1 are user specified trace properties. Such double restrictions are naturally incom-
patible with refinement-based proofs as in ProVerif, i.e., that rely on a fine-grained relation

32

Protocol Properties Our Proofs Time U PV

ProVerif distribution
EKE WeakSec. ✓≈o 2s - ✓≈o

BAC (prv. ch) Unlink. ✗ ✗ ✗

NSPK StrongSec. ✓≈o 1s - ✓≈o

Prv. Auth. Anon. ✓≈o 1s ✗ ✓≈o

WMF StrongSec. ✓≈o 1s - ✓≈o

Ukano distribution
BAC+AA+PA Anon. ✓⊑m ∩ ⊒o 1s ✓≈m ✗

BAC+AA+PA Unlink. ✓⊑m ∩ ⊒o 1s ✓≈m ✗

Feldhofer Unlink. ✓⊑m ∩ ⊒o 1s ✓≈m ✗

Hash Lock Unlink. ✓⊑m ∩ ⊒o 1s ✓≈m ✗

LAK Unlink. ✓⊑m ∩ ⊒o 1s ✓≈m ✗

PACE Unlink. ✓⊑m ∩ ⊒o 3m20s ✓≈m ✗

Simplified TLS
Basic Unlink. ✓⊑m ∩ ⊒o 2s ✗ ✗

With HRR Unlink. ✓⊑m ∩ ⊒o 1m48s - ✗

With HRR, PSK Unlink. ✗ - ✗

Other models
Running example Unlink. ✓⊑m ∩ ⊒o 1s ✓≈m ✗

Helios Vote Prv. ✓≈o 1s - ✓≈o

Toy Simu 1,2 ✓⊑o ∩ ⊒o 1s - ✗

Toy Flow 1 ✓⊑o ∩ ⊒o 1s - ✗

Table 1: Benchmarks
✓R: proof of the relation R -: syntactically not in the scope of the tool ✗: in the scope
but the tool fails to prove
U: Results using Ukano PV: Results using ProVerif Vanilla

such as diff-equivalence to prove coarser ones. One possible direction would be to investigate
whether an approach like ours directly targetting a coarser-grained, trace-based equivalence
such as may-testing may circumvent such issues.

33

Index: Correspondence with CSF’23 Conference Paper

Biconfiguration: Definition 8 – [Ano23a, Definition 9] . 15

Consistency: Lemma 3 – [Ano23a, Lemma 1] . 20
Control-flow equivalence: Definition 5 – [Ano23a, Definition 5] . 11
Convergence criterion: Lemma 5 – [Ano23a, Lemma 2]. .27
Convergence: Definition 9 – [Ano23a, Definition 10] .16

Equivalence and convergence: Theorem 1 – [Ano23a, Theorem 1] . 18
Event satisfaction: Definition 12 – [Ano23a, Definition 8] . 18

Falsification: Definition 20 – [Ano23a, Definition 15] . 27
Falsifying condition: Definition 19 – [Ano23a, Definition 14] . 26

Instrumentated trace: Definition 7 – [Ano23a, Definition 7] . 14
Instrumentation: Definition 6 – [Ano23a, Definition 6] . 13

May-testing convergence: Definition 10 – [Ano23a, Definition 11]. .18
May-testing preorder (practical verification): Theorem 6 – [Ano23a, Theorem 4] 30
May-testing preorder (theoretical verification): Theorem 3 – [Ano23a, Theorem 3] 28

Potential matching: Definition 13 – [Ano23a, Definition 12] . 19

Session matching: Definition 16 – [Ano23a, Definition 13] . 25
Skolemisation: Definition 21 – [Ano23a, Definition 16] . 29
Soundness Initial Clauses: Theorem 2 – [Ano23a, Theorem 2] . 23
Soundness Saturation: Corollary 1 – [Ano23a, Corollary 1] . 23

34

References

[ABF17] Mart́ın Abadi, Bruno Blanchet, and Cédric Fournet. The applied pi calculus:
Mobile values, new names, and secure communication. Journal of the ACM
(JACM), 2017.

[Ano23a] Anonymised. Indistinguishability beyond diff-equivalence in proverif, 2023. Sub-
mitted to CSF’23.

[Ano23b] Anonymised. Indistinguishability beyond diff-equivalence in proverif: Source
code and benchmarks. https://www.dropbox.com/sh/t0bwuppbjab0dka/

AADFc5E-zDlLPMyvF80fa1Sua?dl=0, 2023. Submitted to CSF’23 as supplemen-
tary materials.

[BBK17] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified models
and reference implementations for the TLS 1.3 standard candidate. In IEEE
Symposium on Security and Privacy, (S&P), 2017.

[BCC22] Bruno Blanchet, Vincent Cheval, and Véronique Cortier. Proverif with lemmas,
induction, fast subsumption, and much more. In Proceedings of the 43th IEEE
Symposium on Security and Privacy (S&P’22). IEEE Computer Society Press,
May 2022.

[BCD+19] David Basin, Cas Cremers, Jannik Dreier, Simon Meier, Ralf Sasse, and Benedikt
Schmidt. Tamarin prover manual. available at https://tamarin-prover.

github.io/, 2019.

[BCW22] Karthikeyan Bhargavan, Vincent Cheval, and Christopher A. Wood. A symbolic
analysis of privacy for TLS 1.3 with encrypted client hello. In Heng Yin, Angelos
Stavrou, Cas Cremers, and Elaine Shi, editors, Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2022,
Los Angeles, CA, USA, November 7-11, 2022, pages 365–379. ACM, 2022.

[BDFK12] Jens Bender, Özgür Dagdelen, Marc Fischlin, and Dennis Kügler. The PACE|aa
protocol for machine readable travel documents, and its security. In Finan-
cial Cryptography and Data Security - 16th International Conference, FC 2012,
Kralendijk, Bonaire, Februray 27-March 2, 2012, Revised Selected Papers, 2012.

[BDH+18] David A. Basin, Jannik Dreier, Lucca Hirschi, Sasa Radomirovic, Ralf Sasse, and
Vincent Stettler. A formal analysis of 5G authentication. In ACM Conference
on Computer and Communications Security (CCS), 2018.

[BDM20] David Baelde, Stéphanie Delaune, and Solène Moreau. A method for proving
unlinkability of stateful protocols. In IEEE Computer Security Foundations
Symposium (CSF), 2020.

[BFK09] Jens Bender, Marc Fischlin, and Dennis Kügler. Security analysis of the PACE
key-agreement protocol. In Information Security, 12th International Conference,
ISC 2009, Pisa, Italy, September 7-9, 2009. Proceedings, 2009.

35

https://www.dropbox.com/sh/t0bwuppbjab0dka/AADFc5E-zDlLPMyvF80fa1Sua?dl=0
https://www.dropbox.com/sh/t0bwuppbjab0dka/AADFc5E-zDlLPMyvF80fa1Sua?dl=0
https://tamarin-prover.github.io/
https://tamarin-prover.github.io/

[Bla09] Bruno Blanchet. Automatic verification of correspondences for security proto-
cols. Journal of Computer Security, 17(4):363–434, 2009.

[BS16] Bruno Blanchet and Ben Smyth. Automated reasoning for equivalences in the
applied pi calculus with barriers. In CSF 2016, 2016.

[BSCS20] Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc Sylvestre. Au-
tomatic Cryptographic Protocol Verifier, User Manual and Tutorial. avail-
able at https://prosecco.gforge.inria.fr/personal/bblanche/proverif/
manual.pdf, 2020.

[CB13] Vincent Cheval and Bruno Blanchet. Proving more observational equivalences
with proverif. In Proceedings of the International Conference on Principles of
Security and Trust (POST), 2013.

[CCK12] Rohit Chadha, Ştefan Ciobâcă, and Steve Kremer. Automated verification of
equivalence properties of cryptographic protocols. In Programming Languages
and Systems —Proceedings of the 21th European Symposium on Programming
(ESOP’12), 2012.

[CCT18] Vincent Cheval, Véronique Cortier, and Mathieu Turuani. A little more con-
versation, a little less action, a lot more satisfaction: Global states in proverif.
In Proceedings of the 31st IEEE Computer Security Foundations Symposium
(CSF’18), Oxford, UK, July 2018. IEEE Computer Society Press.

[CDD17] Véronique Cortier, Stéphanie Delaune, and Antoine Dallon. Sat-equiv: an effi-
cient tool for equivalence properties. In Proceedings of the 30th IEEE Computer
Security Foundations Symposium (CSF’17), 2017.

[CGCG+18] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin
Milner. On ends-to-ends encryption: Asynchronous group messaging with strong
security guarantees. In ACM Conference on Computer and Communications
Security (CCS), 2018.

[CGLM17] Véronique Cortier, Niklas Grimm, Joseph Lallemand, and Matteo Maffei. A
type system for privacy properties. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017, 2017.

[CHH+17] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der
Merwe. A comprehensive symbolic analysis of TLS 1.3. In ACM Conference on
Computer and Communications Security (CCS), 2017.

[CKR18] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. DEEPSEC: Deciding
equivalence properties in security protocols - theory and practice. In IEEE
Symposium on Security and Privacy (S&P), 2018.

[CKR19] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. Exploiting symmetries
when proving equivalence properties for security protocols. In ACM Conference
on Computer and Communications Security (CCS), 2019.

36

https://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf

[FDW04] Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer. Strong au-
thentication for RFID systems using the AES algorithm. In Marc Joye and
Jean-Jacques Quisquater, editors, Cryptographic Hardware and Embedded Sys-
tems - CHES 2004: 6th International Workshop Cambridge, MA, USA, August
11-13, 2004. Proceedings, 2004.

[For04] PKI Task Force. PKI for machine readable travel documents offering ICC read-
only access. Technical report, International Civil Aviation Organization, 2004.

[HBD19] Lucca Hirschi, David Baelde, and Stéphanie Delaune. A method for unbounded
verification of privacy-type properties. J. Comput. Secur., 2019.

[JW09] Ari Juels and Stephen A. Weis. Defining strong privacy for RFID. ACM Trans.
Inf. Syst. Secur., 13(1):7:1–7:23, 2009.

[KBB17] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. Automated ver-
ification for secure messaging protocols and their implementations: A symbolic
and computational approach. In IEEE European Symposium on Security and
Privacy (EuroS&P), 2017.

[SEMM14] Sonia Santiago, Santiago Escobar, Catherine Meadows, and José Meseguer. A
formal definition of protocol indistinguishability and its verification using maude-
npa. In International Workshop on Security and Trust Management, 2014.

[vDR08] Ton van Deursen and Sasa Radomirovic. Attacks on RFID protocols. IACR
Cryptol. ePrint Arch., page 310, 2008.

A Proof of Theorem 1

A.1 Link Between Regular and Instrumented Semantics

One important feature of the instrumented semantics is to compress (bounded and un-
bounded) parallel composition as a single indexed replication notation. We first extend the
grammar of (regular) processes with a dummy construction !∅P , with the semantics

{{!∅P}} ∪ P,Φ −→ {{P}} ∪ P,Φ (Empty-Repl)

The notions of may testing equivalence, inclusion, bisimilarity and similarity are also cast
to this extended semantics. This introduces no changes in their decision in the sense of the
following proposition:

Proposition 2. If P is a process in the extended syntax, we write P ↓ the process in the reg-
ular syntax obtained by erasing all !∅ operators, i.e., by syntactically replacing all subprocesses
of the form !∅Q by Q. This notation is lifted to configurations by writing

(P,Φ) ↓= ({{P ↓| P ∈ P}},Φ)

Then P ≈o P ↓ (and therefore P ≈m P ↓).

Proof. It suffices to remark that the binary relation S on configurations defined by ASB iff
A ↓= B ↓ is a bisimulation such that PSP ↓.

37

We also define a transformation J·K of regular processes into this extended syntax, that
introduces !∅ operators similarly as in instrumented processes. Formally:

J0K = 0

Jα;P K = α; JP K for any instruction α

Jlet x = D in P else QK = let x = D in JP K else JQK
J!P K =!JP K
JP | QK =!∅JP K |!∅JQK

Note that, by Proposition 2, we have for all processes P,Q that P ≈ Q iff JP K ≈ JQK, for
any relation ≈∈ {≈m,⊑m,≈o,⊑o}. Moving one step closer to the instrumented semantics,
we also introduce the following notion of unfolding that describes a sequence of transitions
excavating a process from nested parallel operators and replications.

Definition 22 (Unfolding). Let A = {{P}} ∪ P,Φ be a configuration. An unfolding of P (in
A) is a trace t = t1 · t2 of A such that:

1. t contains at least one application of either Rule Repl or Empty-Repl;

2. t1 : A =⇒ A1 with A1 = P1 ∪ P,Φ and t1 only consists of applications of Rules Restr
and Par in P , and is maximal (i.e., these two rules cannot be applied in P1,Φ);

3. if there exists P ′ ∈ P1 that does not start with a replication (either ! or !∅, then t2 may
be empty, in which case we say that t resulted in P ′;

4. if there exists a decomposition P1 = {{!Q}} ∪ P ′
1 or P1 = {{!∅Q}} ∪ P ′

1 (N.B. this is not
exclusive with the previous case), then t2 may be of the form

t2 : A1 −→ A′
1 =⇒ A2

where A′
1 = ({{!Q,Q}} ∪ P ′

1,Φ) or A′
1 = ({{Q}} ∪ P ′

1,Φ), i.e., the first transition of t2 is
obtained by applying either Rule Repl or Empty-Repl, and the trace A′

1 =⇒ A2 is an
unfolding of Q in A1.

Note that the unfolded process P ′ is unique if P = JP0K for some process P0. We then
define two additional semantics of regular processes, taking the form of two labelled transition
relations

α−→u and
α−→wu :

Definition 23 (Unfolding semantics). We define
α−→u as the transition relation on regular

processes (extended with the dummy replication !∅) defined by taking the usual rules (Figure 1
and Rule Empty-Repl), but removing Rules Restr, Par, Repl, and Empty-Repl, and
adding instead the following rule:

{{P}} ∪ P,Φ −→u A if {{P}} ∪ P,Φ =⇒ A is an unfolding of P in A (Unfold)

We define the extended notation
w
=⇒u as usual. We define

α−→wu as the relation −→u, except
that the Unfold is replaced by:

A
α−→wu A′ (Weak-Unfold-In)

if A −→u A′′ by Rule Unfold, resulting in a process P = in(u, v);P ′,

and A′′ α−→ A′ by either Rules In or Comm involving the toplevel input of P

A −→wu A′ (Weak-Unfold)

if A −→u A′ by Rule Unfold but Weak-Unfold-In is not applicable

38

In the next sections, we call (weak) unfolding may testing equivalence, observational equiv-
alence the analogue versions of the usual process relations defined using the transition relations
α−→u or

α−→wu . The relation between the instrumented semantics and the regular semantics can
then be formalised as follows, using the unfolding semantics.

Lemma 6. Let P be a process, A0 = JP K, and tu : A0
α1−→u · · · αn−−→u An be an unfolding trace.

We also let B0 = JP Ki. Then there exists an instrumented trace of the form

tI : B0 =⇒i B
′
0

β1−→i B1 =⇒i B
′
1

β2−→i · · · =⇒i Bn
βn−→i B

′
n

such that there exists a bijection ρ from name patterns to names such that the following
properties hold.

1. All traces Bi =⇒i B
′
i only consist of transitions I-Par, I-App and I-Gen, and the traces

B′
i

βi+1−−−→i Bi+1 are never derived from either of these three rules. In addition, Rule I-Par
should not be applicable from B′

i.

2. The transition B′
i

βi+1−−−→u Bi+1 is derived by Rule I-Nil (resp. I-Repl, I-Comm, I-Let1,

I-Let2, I-Out, I-In, I-Event) iff the transition Ai
αi+1−−−→i Ai+1 is derived by Rule Nil

(resp. Unfold, Comm, Let1, Let2, Out, In, Event). In the cases of the rules I-In,
I-Out and I-Comm, the input/output term M of the instrumented trace is so that the
input/output term of the unfolding trace is Mσ.

3. For all frames Φ such that Ai = P,Φ, and for all w ∈ dom(Φ), wΦ ∈ A with Bi =
P ′,A,Λ.

4. For all sets A such that B′
i = P ′,A,Λ, for all M ∈ A, there exists a recipe ξ such that

ξΦ ⇓ M with Ai = P,Φ.

An analogue statement (omitted there for succinctness) can be derived for the weak variants,
i.e., replacing

α−→u by
α−→wu and

α−→i by
α−→wi. Conversely, for all instrumented traces of the

form of tI , there exists an unfolding trace of the form tu verifying the points above.

A.2 Convergence and May Testing

We prove in this section Theorem 1 in the case of may testing inclusion ⊑m. The same result
for may testing equivalence ≈m is then a direct corollary, observing that π⊑m ∩ π⊒m = π≈m .
To prove the desired result, we introduce a notion of permutability of trace actions that will
allow to reorganise traces to meet the specific requirements of instrumented traces (i.e., to
obtain unfolding traces).

Definition 24 (independence). Let A0
α1−→ · · · αn−−→ An be a trace, and i ∈ J0, n− 2K. We say

that the two transitions ti : Ai
αi+1−−−→ Ai+1 and ti+1 : Ai+1

αi+2−−−→ Ai+2 are independent if they
can be written under the form

ti : (Pi ∪Qi,Φ)
αi+1−−−→ (P ′

i ∪Qi,Φ ∪ Φ′)

ti+1 : (P ′
i ∪Qi,Φ ∪ Φ′)

αi+2−−−→ (P ′
i ∪Q′

i,Φ ∪ Φ′ ∪ Φ′′)

where, in case αi+2 = in(ξ, ζ) is an input action and αi+1 = out(ξ, ω) an output action, the
axiom ω should appear neither in ξ nor ζ.

39

This notion of independence is standard when developing, for instance, partial-order re-
ductions for trace or indistinguishability properties [?, CKR19]. Its main property of interest
is the permutability of independent transitions.

Proposition 3 (Independent permutability). Using the notations of the above definitions, if
ti and ti+1 are independent, then there exists a trace of the form:

A0
α1···αi====⇒ Ai

αi+2αi+1
======⇒ Ai+2

αi+3···αn
======⇒ An

Writing τ the permutation of J1, nK such that τ(i+ 1) = i+ 2, τ(i+ 2) = i+ 1 and τ(k) = k
if k /∈ {i+1, i+2}, this trace is referred to as τ.t. This notation is extended to instrumented
traces and bitraces in the natural way.

The proof of this proposition is immediate. More generally, we may use the notation τ.t
for successive applications of this group action, i.e., (τ1 ◦ τ2).t refers to τ1.(τ2.t). In this case
we call τ a permutation of independent transitions of t. A simple corollary of this proposition
is the following one:

Corollary 2 (Unfoldability). Let P be a process and t be a trace of JP K (in the sense of Ap-
pendix A.1). Then there exists an extension te = t · t′ of t and a permutation π of independent
transitions of t · t′ such that:

1. t′ only consists of applications of Rules Restr, Par, Repl, Comm or In;

2. π.te can be interpreted (in the natural way) as a −→wu-trace.

Intuitively, this results expresses that traces can be interpreted as unfolding traces up to
minor modifications not affecting proofs of may testing equivalence. This is formally captured
by the proof arguments for Theorem 1.

▷ Proof of Theorem 1, case ⊑m. Let P,Q be two processes, and C = ({{(JP Ki, JQKi)}}, ∅, ∅).
We assume that π⊑m(C) and we want to prove that P ⊑m Q. By Proposition 2, it suffices to
prove that JP K ⊑m JQK. Let thus t be a trace of JP K and S be a set of recipes (built from
axioms appearing in t). By Corollary 2, we can let te = t · t′e an extension of t such that t′e
only consists of Rules Restr, Par, Repl, Comm or In, as well as π permuting independent
transitions of te such that π.te can be interpreted as a −→wu -trace tu. For that we let tI be the
instrumented trace obtained by applying Lemma 6 to tu, that we extend to tu · tAu , where tAu
contains applications of Rules I-App and I-Gen necessary to construct all recipes of S. We
then let t2I be the convergent bitrace obtained by applying the assumption π⊑m(C). As the
transitions of t′e are either silent or do not affect the frame, and by convergence of C, it suffices
to take t′ an adequate prefix of π′.t′I , with t′I the trace obtained by the converse of Lemma 6
applied to the instrumented trace proj1(t

2
I), and π′ permuting independent transitions of

t′I .

A.3 Convergence and Bisimilarity

We only establish the proof of Theorem 1 in the case of π≈o , and the proofs for π⊑o can be
obtained using an identical reasoning. Similarly to the proof above for may testing equiva-
lence, we first establish results allowing to reduce the proofs of observational equivalence to
their unfolding version.

40

Proposition 4. Let P,Q be two processes. If JP K and JQK are unfolding observationally
equivalent, then P and Q are observationally equivalent.

Proof. Let us assume that JP K and JQK are weak unfolding observationally equivalent, and
let us prove, by Proposition 2, that JP K and JQK are observationally equivalent. We thus let
S be an unfolding bisimulation such that JP KSJQK, and we define the relation S̄ by AS̄B
iff there exist A =⇒ A′ and B =⇒ B′ two traces only consisting of Rules Restr, Repl,
Par or Empty-Repl such that A′SB′. Note that JP KS̄JQK. Let us thus prove that S̄ is a
bisimulation.

First of all, since S is a symmetric relation included in static equivalence, S̄ is one as
well. Let then A,B be two configurations such that AS̄B (and therefore ASB), a transition

A
α−→ A′, and let us construct B

β
=⇒ B′ such that α ≡ β and A′S̄B′. The result directly follows

from the fact that ASB if the transition A
α−→ A′ is derived from any rule except Restr,

Repl, Par or Empty-Repl. If the transition is derived by either of these rules, we have
A′S̄B by definition, hence the result.

Using a similar construction, we can show that JP K and JQK being weak unfolding obser-
vationally equivalent implies them being unfolding observationally equivalent. Hence:

Corollary 3. Let P,Q be two processes. If JP K and JQK are weak unfolding observationally
equivalent, then P and Q are observationally equivalent.

Altogether, we obtain the following proof:

▷ Proof of Theorem 1, case π≈o. Let P,Q be two processes, and C = ({{(JP Ki, JQKi)}}, ∅, ∅).
We assume that π≈o(C) and we want to prove that P ≈o Q. By Corollary 3, it suffices to
prove that JP K and JQK are weak unfolding observationally equivalent. We define a relation S
on processes as the smallest symmetric relation such that, for all biconfigurations C′ such that
t2I : C wI=⇒i2 C′ and π≈o(C′), writing tI = proj0(t

2
I) (resp. tI = proj1(t

2
I)), then for all weak

unfolding traces tu : JP K w
=⇒ A (resp. tu : JQK w

=⇒ B) verifying the properties of the converse
of Lemma 6 w.r.t. tI , we have ASB. Note in particular that JP KSJQK. It therefore suffices
to prove that S is a weak unfolding bisimulation to conclude. Let A,B be two configurations
such that ASB.

We first prove that A and B are statically equivalent. By definition, we let C′ be a
biconfiguration such that t2I : C wI=⇒i2 C′, π≈o(C′) and for two traces JP K w

=⇒ A and JQK w
=⇒ B

(resp. JP K w
=⇒ B and JQK w

=⇒ A, as S is defined as a symmetric closure) verifying the properties
of the converse of Lemma 6 w.r.t. proj0(t

2
I) and proj1(t

2
I). In particular, writing A = (P,Φ0),

B = (Q,Φ1), proji(C′) = (Pi,Ai,Λi) we have dom(Φ) = dom(Ψ) and, by Item 3, for all
w ∈ dom(Φi), wΦi ∈ Ai. Let then ξ be a recipe and let us prove that ξΦ0 ⇓ fail iff ξΦ1 ⇓ fail.
We consider a sequence of I-App and I-Gen transitions from proj0(C′) (or proj1(C′) for the
symmetric case, whose treatment is analogous), corresponding to the construction of the
recipe ξρ−1, where ρ is the bijection from name patterns to names given by Lemma 3 by
hypotheses on A and B. Since π≈o(C′), we obtain the corresponding sequence of transitions
C′ =⇒i2 C′′, where C′′ is convergent. In particular, we obtain the expected conclusion by using
Item 9 of the definition of convergence (Definition 9).

Let us then assume in addition that A
α−→wu A′. We thus let an extension of the in-

strumented trace proj0(t
I
2) given by the converse of Lemma 6, written proj0(t

2
I) · tI where

tI : proj0(C′)
α
=⇒wi A′′. In particular, since π≈o(C′), there exists a convergent bitrace

41

s2I : C′ α
=⇒wi2 C′′ such that proj0(s

2
I) = tI . It then suffices to consider the weak unfolding

trace B
α
=⇒wu B′ obtained by applying Lemma 6 to proj1(s

2
I), as then A′SB′.

B Properties on occurrences

We extend the notation ≺C to all occurrence names (including the one on inputs).

Lemma 7. Let C be an initial configuration. For all o, o′ occurrence names in C, if o ≺C o′

and

• either !
o[ã]

b̃
P or ino[ã](M,x);P occurs in C

• and either !
o′[ã′]

b̃′
P or ino

′[ã′](M,x);P occurs in C

then o[ã] ≺C o′[ã′]. Moreover, if o and o′ are two occurrence replication names then ã is a
prefix of ã′. Finally, if ã is ground then o[ã] can only occur once

Proof. Directly given by the transformation from a process to an instrumented process.

Lemma 8. Let C be an initial instrumented configuration. Let T ∈ wrtrace(C). Let i ∈ N
such that T [i] = P,A,Λ.

For all occurrence names o, o′ in T [i] and {ev | T, j ⊢ ev ∧ j ≤ i}, if o ≺C o′ and

• either !
o[ã]

b̃
P or ino[ã](M,x);P occurs in T [i] or T, j ⊢ ev with j ≤ i and orepl(ev) = o[ã];

• and either !
o′[ã′]

b̃′
P or ino

′[ã′](M,x);P occurs in T [i] or T, j ⊢ ev with j ≤ i and orepl(ev) =

o[ã];

then o[ã] ≺C o′[ã′]. Moreover, if o and o′ are two occurrence replication names then ã is a prefix
of ã′. Finally, if ã is ground then o[ã] only occurs once in T [i] and {ev | T, j ⊢ ev ∧ j ≤ i}.

Proof. The proof is done by induction on i. It relies on the following observation:

• o[ã] ≺C o′[ã] implies that o[ã]σ ≺C o′[ã]σ for all substitution σ.

• T, j ⊢ ev with j ≤ i and orepl(ev) an occurence replication name imply orepl(ev) ∈ Λ.

• The rule I-Repl always instantiate the bound session identifier in such a way that o[ã]
was not already in Λ

• When the rule I-In or I-Comm is applied, the occurrence pattern o[ã] is ground hence
only occur on the process on which the rule is applied.

Lemma 2. Let C be an initial instrumented configuration. For all i, j ∈ N, for all T ∈
wrtrace(C),

• if T, i ⊢ pre(o1,M) and T, j ⊢ pre(o2, N); or T, i ⊢ repli(o1,M) and T, j ⊢ repli(o2, N)
then

1. o1 = o2 if and only if i = j

2. i = j implies M = N

42

• if T, i ⊢ ev and T, j ⊢ ev ′ with ev , ev ′ ∈ Ev! then

1. orepl(ev) = orepl(ev ′) implies i = j

2. i = j implies ev = ev ′

• if T ⊢ ev and T ⊢ ev ′ with ev , ev ′ ∈ Ev!, orepl(ev) = o[ã] and orepl(ev) = o[b̃] then
ã|λ = b̃|λ implies ã = b̃.

Proof. Let T ∈ wrtrace(C) and i, j ∈ N. Assume that T, i ⊢ pre(o1[ã1],M) and T, j ⊢
pre(o2[ã2], N). If i = j then by definition of the semantics, we directly have that pre(o1[ã1],M) =
pre(o2[ã2], N), hence M = N and o1[ã1] = o2[ã2]. If o1[ã1] = o2[ã2] then we know from the
semantics that o1[ã1] is ground. Let us assume w.l.o.g. that i ≥ j. By Lemma 8, we
know that o1[ã1] occur once in T [i] and {ev | T, j′ ⊢ ev ∧ j′ ≤ i}. Thus, i = j. Sim-
ilar proof allow holds when T, i ⊢ repli(o1[ã1],M) and T, j ⊢ repli(o2[ã2], N); and when
T, i ⊢ repl(o1[ã1]) and T, j ⊢ repl(o2[ã2]) then we have once again by the semantics that i = j
implies repl(o1[ã1]) = repl(o2[ã2]).

Lemma 3 (Consistency). Let C be an initial instrumented biconfiguration. For all T ∈
wrtrace2(C), if T, i ⊢2 (ev0, ev1) and T, j ⊢2 (ev ′0, ev

′
1) with ev0, ev1, ev

′
0, ev

′
1 ∈ Ev! ∪ Ev!i then

• (orepl(ev0), orepl(ev1)) ∈ pm(C)

• orepl(ev0) ≺C orepl(ev ′0) if and only if orepl(ev1) ≺C orepl(ev ′1)

Proof. A simple proof by induction on the size of the trace T allows us to show that for all
i ∈ N, if T [i] = P,A,Λ then for all (P,Q) ∈ P, pm(P,Q) ⊆ pm(C). Thus when the replication
rule is executed, the two occurrence replication names are by definition in pm(C). The second
bullet point follows from Lemma 8.

Lemma 4. Let C0 be an initial convergent instrumented biconfiguration. Let C0
tr
=⇒i2 C1 =

P,A,Λ. Let i ∈ {0, 1}.
Assume proji(C1)

repl(oi[ãi])−−−−−−→i C′
2. For all o1−i such that k = arλC0(o1−i), for all λ1, . . . , λk ∈

N, if (o0, o1) ∈ pm(C0) and for all (o′0[ã
′
0], o

′
1[ã

′
1]) ∈ Λ,

• o′i[ã
′
i] ≺C0 oi implies o′1−i[ã

′
1−i] ≺C0 o1−i[λ1, . . . , λk]

• o′1−i[ã
′
1−i|λ] ̸= o1−i[λ1, . . . , λk]

then C1
(repl(o0[ã0]),repl(o1[ã1]))−−−−−−−−−−−−−−−→i2 C2 for some ã1−i with proji(C2) = C′

2 and ã1−i|λ = λ1, . . . , λk.

Proof. Let us assume w.l.o.g. that i = 0 (the proof of i = 1 is symmetrical). Let us denote
C′
2 = P ′

2,A2,Λ2.

Since proj0(C1)
repl(o0[ã0])−−−−−−−→i C′

2, we deduce that P = P ′ ∪ {{({{!o
b̃
P}} ∪ M,M′)}}, P ′

2 =

proj0(P ′) ∪ {{Pσ, {{!oãP}} ∪M}}, Λ2 = proj0(Λ) ∪ {o0[ã0]} with dom(σ) = b̃, o0[ã0] = oσ and
oσ ̸∈ proj0(Λ).

By construction of pm(C0) and by application of Lemma 3, if (o′0[ã
′
0], o

′
1[ã

′
1]) ∈ Λ such that

o0 is directly in the scope of o′0[ã
′
0] then the only occurrence names o1 such that (o0, o1) ∈

pm(C0) and o′1[ã
′
1] ≺C0 o1[λ1, . . . , λk] for some ã1 are the occurrences at the root of M′, i.e.

M = {{!o′
b̃′
P ′}} ∪M′′ and σ′ such that o′σ′ = o1[ã1] and λ1, . . . , λk = ã1|λ.

43

Since we also have that o′1[ã
′
1|λ] ̸= o1[λ1, . . . , λk], by using Lemma 2, we deduce that

o1[ã1] ̸∈ proj1(Λ). Thus allows to us conclude that the application of the bistep I2-Repl is
possible.

C Proof of Theorem 2

Definition 25. Let C0 be an initial instrumented configuration. Let T ∈ wrtrace2(C0) be
a data compliant trace. Let D be a derivation of F at step τ . We say that T satisfies a
derivation D, denoted T ⊢ D, when for all nodes η of D, if F0 is the label of the incoming
edge of η then

1. if F0 = att(f(M1, . . . ,Mm), f(M ′
1, . . . ,M

′
m)) with f ∈ Fdata then

• either R is the clause att(x1, x
′
1)∧ . . .∧att(xm, x′M) → att(f(x1, . . . , xm), f(x′1, . . . ,

x′m));

• or η is not the root and the node η′ connected to the incoming edge of η is labelled
with the clause att(f(x1, . . . , xm), f(x′1, . . . , x

′
m)) → att(xj , x

′
j) for some j

2. if F0 = ev(ev, ev′) then T ⊢ (ev, ev′)

When all nodes but the root satisfy the two properties and the root satisfy only property 2, we
say that T weakly satisfy D, denoted T ⊢w D.

Lemma 9. Let C0 = P0,A0 be an initial instrumented configuration. Let T ∈ wrtrace2(C0).
Let C = CA(C0) ∪CP(C0) ∪Ce(T). For all terms M,M ′, for all derivations D of att(M,M ′)
such that T ⊢w D, there exists a derivation D′ of att(M,M ′) such that T ⊢ D′.

Proof. We prove this lemma by induction on the sizes of M,M ′, i.e. |M |+ |M ′|.

Base case |M |+ |M ′| = 0: Such a case is impossible hence the result trivially holds.

Inductive case |M |+|M ′| > 0: Let us assume that T ̸⊢ D (otherwise the result directly holds).
Hence, M = f(M1, . . . ,Mm), M ′ = f(M ′

1, . . . ,M
′
m) with f ∈ Fdata and D is root by a node la-

belled by a ruleR different from att(x1, x
′
1)∧. . .∧att(xm, x′M) → att(f(x1, . . . , xm), f(x′1, . . . , x

′
m)).

Note that for all i ∈ {1, . . . ,m}, we can build the derivation Di built as follows:

att(f(x1, . . . , xm), f(x′1, . . . , x
′
m)) → att(xi)

D

att(Mi,M
′
i)

att(M,M ′)

Notice that T ⊢w Di as the root node of D is now connected to the clause att(f(x1, . . . , xm),
f(x′1, . . . , x

′
m)) → att(xi). Since |Mi| + |M ′

i | < |M | + |M ′|, we can apply on inductive hy-
pothesis and deduce that there exists a derivation D′

i of att(Mi,M
′
i) such that T ⊢ D′

i. We
conclude by building the following derivation D′:

44

att(x1, x
′
1) ∧ . . . ∧ att(xm, x′m) → att(f(x1, . . . , xm), f(x′1, . . . , x

′
m))

...D′
1 D′

m

att(M,M)

att(M1,M
′
1) att(Mm,M ′

m)

Lemma 10 ([?]). Let σ be a closed substitution.
Let D be a plain expression. If Dσ ⇓ U , then there exist U ′, σ1, ϕ and σ′

1 such that
D ⇓′ (U ′, σ1, ϕ), U = U ′σ′

1, σ = (σ1σ
′
1)|dom(σ) and σ′

1 |= ϕ.
Let D1, . . . , Dn be plain expressions. If for all i ∈ {1, . . . , n}, Diσ ⇓ Ui, then there exist

U ′
1, . . . , U

′
n, σ1, ϕ and σ′

1 such that (D1, . . . , Dn) ⇓′ ((U ′
1, . . . , U

′
n), σ1, ϕ), Ui = U ′

iσ
′
1 for all

i ∈ {1, . . . , n}, σ = (σ1σ
′
1)|dom(σ) and σ′

1 |= ϕ.

Before proving Theorem 2, we state an invariant on the traces in wrtrace2(C0).

Definition 26. Let CI = PI ,AI be an initial instrumented configuration. Let T ∈ wrtrace2(C0).
Let C = CA(CI) ∪CP(CI) ∪Ce(T). Let τ be a step of T . We say Inv(T, τ) holds if and only
if T [τ] = P,A,∆ and:

1. for all (M,M ′) ∈ A, there exists a derivation D′ of att(M,M ′) from C(τ ′) such that
T ⊢ D′; and

for all (P, P ′) ∈ P, there exist Q,Q′,H, r, σ such that:

2. [[|Q,Q′|]]Hr ⊆ CP(CI); and

3. P = Qσ, P ′ = Q′σ; and

4. for all F ′ ∈ Hσ, there exists a derivation D′ of F ′ from C such that T ⊢ D′.

5. for all formulae ϕ ∈ H, σ |= ϕ.

6. either r = □ or r = diff[o, o′] with → ev(repl(oσ), repl(o′σ)) ∈ Ce(T)

7. if r = diff[o, o′] and P, P ′ starts with an input then T [τ − 1]
(repl(oσ),repl(o′σ′))−−−−−−−−−−−−→ T [τ] by

the rule I2-Repl .

Lemma 11. Let CI = (PI , P
′
I),AI be an initial instrumented configuration. Let T ∈ wrtrace2(

CI). Let C = CA(CI) ∪ CP(CI) ∪ Ce(T). For all steps τ , Inv(T, τ) holds.

Proof. The proof is done by induction on τ .

Base case τ = 0: T [0] = CI = P,A,Λ with P = {{(PI , P
′
I)}}, A = AI and Λ = ∅. By defining

Q = PI , Q
′ = P ′

I , H = ⊤ and σ = id, we directly obtain that item 3 of Definition 26 holds.
Moreover, by definition, CP(CI) = [[|PI , P

′
I |]]⊤□ hence the item 2 holds. Since Hσ = ⊤,

items 4 and 5 also hold. By definition of an initial instrumented semantics, AI only contains
the public names in PI and P ′

I . Moreover, we know that for all a ∈ AI , → att(a, a) is a clause

45

in CA(CI) (clauses RInit). Hence, we can build the a derivation of att(a, a) that is satisfied
by T which allows us to conclude.

Inductive step τ > 0: Since τ > 0 and τ is a step of T , we know that there exists a step

τ0 = τ − 1 of T such that T [τ0]
ℓ−→i2 T [τ]. By our inductive hypothesis, we deduce that

Inv(T, τ0) holds. Let us denote T [τ0] = P0,A0,Λ0 and T [τ] = P,A,Λ.

We do a case analysis on the transition T [τ0]
ℓ−→i2 T [τ]:

• Rule I2-Nil: Trivial since P ⊂ P0.

• Rule I2-Par: In such a case, P0 = P ′∪{{(P1 | P2, P
′
1 | P ′

2)}}, P = P ′∪{{(P1, P
′
1), (P2, P

′
2)}}.

By our inductive hypothesis, we know that there exist Q1, Q
′
1, Q2, Q

′
2,H, r, σ such that

(Q1 | Q2)σ = (P1 | P2), (Q
′
1 | Q′

2)σ = (P ′
1 | P ′

2) and [[|Q1 | Q2, Q
′
1 | Q′

2|]]Hr ⊆ CP(CI).
By definition, it implies that [[|Q1, Q

′
1|]]H□ ⊆ CP(CI) and [[|Q2, Q

′
2|]]H□ ⊆ CP(CI).

Thus the result holds by associating Q1, Q
′
1,H,□, σ (resp. Q2, Q

′
2,H,□, σ) to (P1, P

′
1)

(resp. (P2, P
′
2)).

• Rule I2-Repl: In such a case, P0 = P ′ ∪ {{({{!oãP}} ∪ M, {{!o′ã′P ′}} ∪ M′)}}, P = P ′ ∪
{{(Pσ, P ′σ′), ({{!oãP}} ∪ M, {{!o′ã′P ′}} ∪ M′)}}, Λ = Λ0 ∪ {(oσ, o′σ′)} with dom(σ) = ã,
dom(σ′) = ã′, img(σ) ∪ img(σ′) ⊆ N, oσ ̸∈ proj0(Λ0), o′σ′ ̸∈ proj1(Λ0) and ℓ =
(repl(oσ), repl(o′σ′)).

Recall that ã and ã′ are sequences of variables. Therefore, by our inductive hypothesis,
we know that there exist o1, o

′
1, Q,Q′,M1,M′

1, H,σ0 such that {{!oãP}}∪M = ({{!o1ã Q}}∪
M1)σ0, {{!o

′

ã′
P ′}} ∪M′ = ({{!o

′
1

ã′
Q′}} ∪M′

1)σ0 and [[|{{!o1ã Q}} ∪M1, {{!
o′1
ã′
Q′}} ∪M′

1|]]Hr ⊆
CP(CI).

By definition, [[|Q,Q′|]]Hdiff[o1, o′1] ⊆ [[|{{!o1ã Q}}∪M1, {{!
o′1
ã′
Q′}}∪M′

1|]]Hr. Thus, by defin-

ing σ′
0 = σ0σσ

′, we deduce that Qσ′
0 = Pσ and Q′σ′

0 = P ′σ′ hence item 2. Furthermore,
as Hσ0 = Hσ′

0, we deduce that items 4 and 5 hold.

We showed that ℓ = (repl(oσ), repl(o′σ′)) meaning that → ev(repl(oσ), repl(o′σ′)) is
in Ce(T) ⊆ C. Since oσ = o1σ0σ = o1σ

′
0 and o′σ = o′1σ0σ

′ = o′1σ
′
0, we conclude that

items 6 and 7 hold.

• Rule I2-Comm: In such a case, P0 = P ′∪{{(out(N,M);P1, out(N
′,M ′);P ′

1), (in
o(N, x);P2,

ino
′
(N ′, x′);P ′

2)}} and P = P ′ ∪ {{(P1, P
′
1), (P2{M/x}, P ′

2{M
′
/x′})}} and ℓ = (pre(o,M),

pre(o′,M ′)). By our inductive hypothesis, we know that there exist U1, U
′
1, U2, U

′
2, V, V

′,
Q1, Q

′
1, Q2, Q

′
2, o1, o

′
1, H1,H2, r1, r2, σ1, σ2 such that

– (out(N,M);P1, out(N
′,M ′);P ′

1) = (out(U1, V);Q1, out(U
′
1, V

′);Q′
1)σ1,

– (ino(N, x);P2, in
o′(N ′, x′);P ′

2) = (ino1(U2, x);Q2, in
o′1(U ′

2, x
′);Q′

2)σ2

– [[|out(U1, V);Q1, out(U
′
1, V

′);Q′
1|]]H1r1 ⊆ CP(CI)

– [[|ino1(U2, x);Q2, in
o′1(U ′

2, x
′);Q′

2|]]H2r2 ⊆ CP(CI)

By definition, we have:

– [[|out(U1, V);Q1, out(U
′
1, V

′);Q′
1|]]H1r1 = [[|Q1, Q

′
1|]](H1∧G1)□∪{H1∧G1 → msg(

U1, V, U
′
1, V

′)}

46

– [[|ino1(U2, x);Q2, in
o′1(U ′

2, x
′);Q′

2|]]H2r2 = [[|Q2, Q
′
2|]](H2 ∧ msg(U2, x, U

′
2, x

′) ∧ ev(
pre(o1, x), pre(o′1, x

′)) ∧G′
2)□ ∪ {H2 ∧G2 → input(U2, U

′
2)}

where G1 = ⊤ if r1 = □ else G1 = ev(repl(proj0(r1)), repl(proj1(r1))); and G2 = G′
2 =

⊤ if r2 = □ elseG2 = ev(repl(proj0(r2)), repl(proj1(r2))) andG′
2 = ev(repli(proj0(r1), x),

repli(proj1(r2), x)).

Let us define σ′
2 = σ2[x 7→ M,x′ 7→ M ′]. Thus, P2{M/x} = Q2σ

′
2 and P ′

2{M
′
/x′} =

Q′
2σ

′
2. Moreover, note that U1σ1 = U ′

1σ2 and U ′
1σ1 = U ′

1σ2. Therefore, items 2 and 3
hold by associating Q1, Q

′
1, (H1∧G1),□, σ1 to (P1, P

′
1) and by associating Q2, Q

′
2, (H2∧

msg(U2, x, U
′
2, x

′) ∧ ev(pre(o1, x), pre(o′1, x
′)) ∧G′

2),□, σ
′
2 to (P2{M/x}, P ′

2{M
′
/x′).

We now show the other items of Definition 26. Item 1 trivially hold since A0 = A.
Item 5 also trivially holds since no new formula has been added. Thus it remains to
prove items 4 for G1, G

′
2,msg(U2, x, U

′
2, x)σ

′
2 and ev(pre(o1, x), pre(o′1, x

′))σ′
2.

Thanks to our inductive hypothesis, if r1 ̸= □ then we know that→ ev(repl(proj0(r1))σ1,
repl(proj1(r1))σ1) ∈ Ce(T) ⊆ CP . Moreover, if r2 ̸= □ then we know that T [τ0 −
1]

(repl(proj0(r2)σ2,repl(proj1(r2)σ2)−−−−−−−−−−−−−−−−−−−−−−→i2 T [τ0]. Hence, T, τ ⊢ (repli(proj0(r2)σ2, xσ
′
2), repli(

proj1(r2)σ2, x
′σ′

2). This allows us to deduce that → G′
2σ

′
2 is in Ce(T) and so in C.

We already proved that o = o1σ2, o′ = o′1σ2, V σ1 = M = xσ′
2 and V ′σ1 = M ′ =

x′σ′
2. But we have T [τ0]

ℓ−→wi2 T [τ] with ℓ = (pre(o,M), pre(o′,M ′)). Thus, →
ev(pre(o,M), pre(o′,M ′)) ∈ Ce(T) ⊆ C. Hence, there exists a derivation D of ev(
pre(o1, x), pre(o′1, x

′))σ′
2 from C such that T ⊢ D.

Let us assume that H1 = F1 ∧ . . . ∧ Fk ∧ ϕ. Since Inv(T, τ0) holds, σ1 |= ϕ and
there exist some derivations D1, . . . ,Dk of F1σ1, . . . , Fkσ1 respectively from C such that
T,⊢ Dj for all j = 1 . . . k. But the rule H1 → msg(U1, V, U

′
1, V

′) is in C. Since
msg(U1, V, U

′
1, V

′)σ1 = msg(U2, x, U
′
2, x

′)σ′
2, we can build the following derivation D of

msg(N,M,N ′,M ′):

H1 → msg(U1, V, U
′
1, V

′)

...D1 Dk

msg(N,M,N ′,M ′)

F1σ1 Fkσ1

Since T ⊢ Fi for 1 ≤ i ≤ k, we deduce that T ⊢ D which allows us to conclude.

When r1 ̸= □, the derivation becomes

47

ev(repl(proj0(r1)), repl(proj1(r1))) ∧H1 → msg(U1, V, U
′
1, V

′)

...D1 Dk→ ev(repl(proj0(r1)), repl(proj1(r1)))σ1

msg(N,M,N ′,M ′)

ev(repl(proj0(r1)), repl(proj1(r1)))σ1 F1σ1 Fkσ1

For the rest of the proof, we focus on the cases where r = □ as the arguments are the
same as described here.

• Rule I2-Let1: In such a case, P0 = P ′∪{{(let x = D in P1 else P2, let x
′ = D′ in P ′

1 else P
′
2)}}

and P = P ′ ∪ {{(P1{M/x}, P ′
1{M

′
/x′})}} with D ⇓ M and D′ ⇓ M ′.

By our inductive hypothesis, we know that there exist D1, D
′
1, Q1, Q

′
1, Q2, Q

′
2,H, σ such

that (let x = D1 inQ1 elseQ2)σ = (let x = D in P1 else P2), (let x = D′
1 inQ

′
1 elseQ

′
2)σ =

(let x = D′ in P ′
1 else P

′
2) and [[|let x = D1 in Q1 else Q2, let x = D′

1 in Q′
1 else Q

′
2|]]H□ ⊆

CP(CI).
Since D = D1σ and D′ = D′

1σ, we can apply Lemma 10 to obtain that there exist
N,N ′, σ1, σ

′
1, and ϕ such that (D1, D

′
1) ⇓′ ((N,N ′), σ1, ϕ), M = Nσ′

1, M ′ = N ′σ′
1,

σ = (σ1σ
′
1)|dom(σ) and σ′

1 |= ϕ.

By definition of [[|let x = D1 in Q1 else Q2, let x = D′
1 in Q′

1 else Q′
2|]]H□, we have

[[|Q1σ1σ
′′
1 , Q

′
1σ1σ

′′
1 |]](Hσ1∧ϕ)□ ⊆ CP(CI) with σ′′

1 = {N/x,
N ′

/x′}. Note that P1{M/x} =
(Q1σ){Nσ′

1/x} = (Q1σ1σ
′
1){Nσ′

1/x} = (Q1σ1σ
′′
1)σ

′
1. Similarly, P ′

1{M
′
/x′} = (Q′

1σ1σ
′′
1)σ

′
1

implying that item 2 holds. The facts in (Hσ1)σ
′
1 are the same as in Hσ, hence item 4

holds. Finally, since σ′
1 |= ϕ, we conclude that item 5 holds which allows us to conclude.

• Rule I2-Let2: Similar to the previous case.

• Rule I2-Out: In such a case, P0 = P ′ ∪ {{(out(N,M);P, out(N ′,M ′);P ′)}}, N ∈ A0,
A1 = A0 ∪ {(M,M ′)}, (N,N ′) ∈ A0 and P ∪ {{(P, P ′)}}. By our inductive hypoth-
esis, we know that there exists U, V, U ′, V ′, Q,Q′,H, σ such that (out(U, V);Q)σ =
(out(N,M);P), (out(U ′, V ′);Q′)σ = (out(N ′,M ′);P ′) and [[|out(U, V);Q, out(U ′, V ′);
Q′|]]H□ ⊆ CP(CI).
By definition [[|out(U, V);Q, out(U ′, V ′);Q′|]]H□ = [[|Q,Q′|]]H□∪{H → msg(U, V, U ′, V ′)}.
But we know that (N,N ′) ∈ A0. Thus Inv(T, τ ′) ensures that there exists a derivation
D0 of (N,N ′) from C such that T ⊢ D0. Moreover, item 4 also ensures that if we
denote H = F1 ∧ . . . ∧ Fk ∧ ϕ then σ |= ϕ and there exist some derivations D1, . . . ,Dk

of F1σ, . . . , Fkσ respectively from C such that T ⊢ Dj for all j = 1 . . . k. Thus we can
build a derivation D of att(M,M ′) from C as follows:

48

msg(x, y, x′, y′) ∧ att(x, x′) → att(y, y′)

H → msg(U, V, U ′, V ′) D0

...D1 Dk

att(M,M ′)

msg(N,M,N ′,M ′) att(N,N ′)

F1σ Fkσ

Note that we do not necessarily have that T ⊢ D when M,M ′ have a data constructor
function symbol at the root. However, since T ⊢ Di for 0 ≤ i ≤ k, we deduce that
T ⊢w D. We conclude by applying Lemma 9.

• Rule I2-In: In such a case, P0 = P ′ ∪ {{(ino(N, x);P, ino
′
(N ′, x′);P ′)}}, P = P ′ ∪

{{(P{M/x}, P ′{M ′
/x′})}} and ℓ = (pre(o,M), pre(o′,M ′)) with (N,N ′), (M,M ′) ∈ A0.

By our inductive hypothesis, we know that there exist U,U ′, Q,Q′, o1, o′1,H, σ such that

(ino1(U, x);Q)σ = (ino(N, x);P), (ino
′
1(U ′, x′);Q′)σ = (ino

′
(N ′, x′);P ′) and [[|ino1(U, x);

Q, ino
′
1(U ′, x′);Q′|]]H□ ⊆ CP(CI).

By definition, [[|ino1(U, x);Q, ino
′
1(U ′, x′);Q′|]]H□ = [[|Q,Q|]](H ∧msg(U, x, U ′, x′) ∧ ev(

pre(o1, x), pre(o′1, x)))□ ∪ {H → input(U,U ′)}.
Let us define σ′ = σ[x 7→ M,x′ 7→ M ′]. We deduce that P{M/x} = Qσ′ and
P ′{M ′

/x′} = Q′σ′. We show that the result holds by assigningQ,Q′, (H∧msg(U, x, U ′, x′)∧
ev(pre(o1, x), pre(o′1, x))) and σ′ to (P{M/x}, P ′{M ′

/x′}). To do so, it remains to define
a derivation for msg(U, x, U ′, x′)σ′ and ev(pre(o1, x), pre(o′1, x)))σ

′.

We already know that ℓ = (pre(o,M), pre(o′,M ′)) and T [τ0]
ℓ−→wi2 T [τ] hence →

ev(pre(o,M), pre(o′,M ′)) is in Ce(T) ⊆ C. Since we proved that o = o1σ
′, o′ =

o′1σ
′, xσ′ = M and x′σ′ = M ′, we deduce that there exists a derivation D of ev(

pre(o1, x), pre(o′1, x)))σ
′ from C such that T ⊢ D.

We know that Inv(T, τ0) holds and in particular item 1. Thus, (M,M ′), (N,N ′) ∈ A0

implies that there exist some derivations D1,D2 of att(M,M ′), att(N,N ′) respectively
from C such that T ⊢ D1 and T ⊢ D2. As we have already proved that Uσ′ = N and
U ′σ′ = N ′, we can build a derivation D of msg(U, x, U ′, x′)σ′ from C as follows:

att(x, x′) ∧ att(y, y) → msg(x, y, x′, y′)

D1 D2

msg(N,M,N ′,M ′)

att(N,N ′) att(M,M ′)

49

• Rule I2-App: In such a case A = A0 ∪ {(M,M ′)} where (M1,M
′
1), . . . , (Mn,M

′
n) ∈

A0, f ∈ Fd ∪ Fc and f(M1, . . . ,Mn) ⇓ M and f(M ′
1, . . . ,M

′
n) ⇓ M ′. Note that

M1,M
′
1, . . . ,Mm,M ′

m are terms. Thus by definition of ⇓, f(M1, . . . ,Mn) ⇓ M im-
plies that there exist f(U1, . . . , Un) → U || ϕ ∈ def(f) and a substitution σ such that
Uiσ = Mi for all i ∈ {1, . . . , n}, M = Uσ and σ |= ϕ. Similarly, f(M ′

1, . . . ,M
′
n) ⇓ M ′ im-

plies that there exist f(U ′
1, . . . , U

′
m) → U ′ || ϕ′ ∈ def(f) and a substitution σ′ such that

U ′
iσ

′ = M ′
i for all i ∈ {1, . . . , n}, M ′ = U ′σ′ and σ′ |= ϕ′. By considering the variables

of f(U1, . . . , Un) and f(U ′
1, . . . , U

′
n) distinct, we deduce that there exists a substitution

σ0 such that (Uiσ0, U
′
iσ0) = (Mi,M

′
i) for all i ∈ {1, . . . , n}, (M,M ′) = (U,U ′)σ0 and

σ0 |= ϕ ∧ ϕ′.

Moreover, since Inv(T, τ0) holds and (M1,M
′
1), . . . , (Mn,M

′
n) ∈ A0, we know that there

exist some derivations D1, . . . ,Dn of att(M1,M
′
1), . . . , att(Mn,M

′
n) respectively from

C such that T ⊢ Dj for all j = 1 . . . n. Therefore, we can build a derivation D of
att(M,M ′) from C as follows:

att(U1, U
′
1) ∧ . . . ∧ att(Un, U

′
n) ∧ ϕ ∧ ϕ′ → att(U,U ′)

...D1 Dn

att(M,M ′)

att(M1,M
′
1) att(Mn,M

′
n)

Note that we do not necessarily have that T ⊢ D when M,M ′ have a data constructor
function symbol at the root. However, since T ⊢ Di for 0 ≤ i ≤ n, we deduce that
T ⊢w D. We conclude by applying Lemma 9.

• Rule I2-Gen: Direct by application of the clause RGen.

• Rule I2-Event: In such a case, P0 = P ′ ∪ {{(event(ev);P, event(ev′);P ′}}, P = P ′ ∪
{{(P, P ′)}} and ℓ = (ev, ev′). By our inductive hypothesis, there exist ev1, ev

′
1, Q,Q′,H, σ

such that (event(ev1);Q)σ = (event(ev);P), (event(ev′1);Q
′)σ = (event(ev′);P ′) and

[[|event(ev1);Q, event(ev′1);Q
′|]]H□ ⊆ CP(CI).

By definition, [[|event(ev1);Q, event(ev′1);Q
′|]]H□ = [[|Q,Q′|]](H ∧ ev(ev1, ev

′
1))□. Since

ev1σ = ev, ev′1σ = ev′, ℓ = (ev, ev′) and T [τ0]
ℓ−→wi2 T [τ], we deduce that→ ev(ev, ev′) is

in Ce(T) and so in C. Hence, we deduce that there exists a derivation D of ev(ev1, ev
′
1)σ

from C such that T ⊢ D, which allows us to conclude.

Theorem 2 (Soundness Initial Clauses). Let C be an initial instrumented biconfiguration.
For all T ∈ wrtrace2(C), if T does not converge then there exists a derivation of bad from
CP(C) ∪ Ce(T).

Proof. Since T does not converge, we deduce that there exists a step τ such that T [τ] does
not converge. By Lemma 11, we know that Inv(T, τ) holds. Let us denote T [τ] = P,A,Λ.
We do a case analysis on why T [τ] does not converge by looking at Definition 9.

50

• Case (M1,M
′
1), . . . , (Mn,M

′
n) ∈ A, f ∈ Fd and f(M1, . . . ,Mn) ⇓ fail but f(M ′

1, . . . ,M
′
n) ⇓

M ′ for some M ′ (the case f(M1, . . . ,Mn) ⇓ M but f(M ′
1, . . . ,M

′
n) ⇓ fail is sym-

metrical): Thanks to Inv(T, τ), we know that there exists derivations D1, . . . ,Dn of
(M1,M

′
1), . . . , (Mn,M

′
n) respectively such that T ⊢ Di for 1 ≤ i ≤ n.

Note thatM1,M
′
1, . . . ,Mm,M ′

m are terms. Thus by definition of ⇓, f(M1, . . . ,Mn) ⇓ fail
implies that there exist f(U1, . . . , Un) → U || ϕ ∈ def(f) and a substitution σ such that
Uiσ = Mi for all i ∈ {1, . . . , n}, fail = Uσ and σ |= ϕ. Similarly, f(M ′

1, . . . ,M
′
n) ⇓ M ′

implies that there exist f(U ′
1, . . . , U

′
m) → U ′ || ϕ′ ∈ def(f) and a substitution σ′ such

that U ′
iσ

′ = M ′
i for all i ∈ {1, . . . , n}, M ′ = U ′σ′ and σ′ |= ϕ′. By considering the

variables of f(U1, . . . , Un) and f(U ′
1, . . . , U

′
n) distinct, we deduce that there exists a

substitution σ0 such that (Uiσ0, U
′
iσ0) = (Mi,M

′
i) for all i ∈ {1, . . . , n}, (M,M ′) =

(U,U ′)σ0 and σ0 |= ϕ ∧ ϕ′.

Therefore, combining the appropriate clause from (Rf) and the clause (RIBad2), we can
build the following derivation:

att(fail, x) → bad

att(U1, U
′
1) ∧ . . . ∧ att(Un, U

′
n) ∧ ϕ ∧ ϕ′ → att(U,U ′)

...D1 Dn

bad

att(fail,M ′)

att(M1,M
′
1) att(Mn,M

′
n)

• Case P = P ′ ∪ {{(let x = D in P1 else P2, let x′ = D′ in P ′
1 else P ′

2)}} and D ⇓ fail
but D′ ⇓ M ′ for some M ′ (the case D ⇓ M and D′ ⇓ fail is symmetrical): Thanks
to Inv(T, τ), we know that there exist D1, D

′
1, Q1, Q2, Q

′
1, Q

′
2, H, r and σ such that

(let x = D1 in Q1 else Q2)σ = (let x = D in P1 else P2), (let x = D′
1 in Q′

1 else Q′
2)σ =

(let x = D′ in P ′
1 else P

′
2) and [[|let x = D1 in Q1 else Q2, let x = D′

1 in Q′
1 else Q

′
2|]]H□ ⊆

CP(CI).
Since D = D1σ and D′ = D′

1σ, we can apply Lemma 10 to obtain that there exist
U,U ′, σ1, σ

′
1, and ϕ such that (D1, D

′
1) ⇓′ ((U,U ′), σ1, ϕ), fail = Uσ′

1, M ′ = U ′σ′
1,

σ = (σ1σ
′
1)|dom(σ) and σ′

1 |= ϕ.

By definition of [[|let x = D1 in Q1 else Q2, let x = D′
1 in Q′

1 else Q′
2|]]H□, we have that

the following clause is in C:
Hσ1 ∧ Fσ1 ∧ ϕ → bad

with F = ⊤ if r = □ else F = ev(repl(proj0(r)), repl(proj1(r))). Moreover, item 4
of Definition 26 indicates that there exists a conjunction of derivation DH of Hσ from
C such that T ⊢ DH. Finally, item 6 of Definition 26 indicate that if r ̸= □ then
→ ev(repl(proj0(r)), repl(proj1(r)))σ is in C. Hence, there exists a derivation Dr of
F (by abuse of notation, we consider Dr empty when F = ⊤) such that T ⊢ F . This
allows us to build the following derivation

51

Hσ1 ∧ Fσ1 ∧ ϕ → bad

DH Dr

bad

Hσ Fσ

• One communication succeeds on one side but not on the other: In such a case, one the

following case holds (i) P = P ′∪{{(out(N,M);P, out(N ′,M ′);P ′), (ino(L, x);Q, ino
′
(L′, x′);Q′)}},

(ii) (L,L′) ∈ A and P = P ′ ∪ {{(out(N,M);P ; out(N ′,M ′);P ′)}} (iii) (N,N ′) ∈ A and

P = P ′ ∪ {{(ino(L, x);P, ino′(L′, x′);P ′)}} Additionally, N = L and N ′ ̸= L′ (the case
N ̸= L and N ′ = L′ is symmetrical).

In all three cases, we will show that there exist a derivation Din of input(L,L′) from C;
and a derivation Dmsg of msg(N,M,N ′,M ′) from C from some M,M ′. Once these two
derivations obtained, we can generate the following derivation to conclude:

input(x, y) ∧msg(x, z, y′, z′) ∧ y ̸= y′ → bad

Din Dmsg

bad

input(L,L′) msg(N,M,N ′,M ′)

When (L,L′) ∈ A, we know from item 1 of Inv(T, τ) that there exists a derivation D
of att(L,L′). Hence, we can build the derivation Din:

att(x, x′) → input(x, x′)

D

input(L,L′)

att(L,L′)

When (ino(L, x);P, ino
′
(L′, x′);P ′) is in the multiset P, we know from Inv(T, τ) that

there exist U,U ′, o1, o
′
1, Q,Q′,H, r, σ such that ino(L, x);P = (ino1(U, x);Q)σ, ino

′
(L′, x′);P ′ =

(ino
′
1(U ′, x′);Q′)σ and [[|ino1(U, x);Q, ino

′
1(U ′, x′);Q′|]]Hr ⊆ C. In particular, the clause

H∧F ′ → input(U,U ′) is in C where F ′ = ⊤ if r = □ or F ′ = ev(repl(proj0(r)), repl(proj1(r))).

From item 6, we additionally know that if r ̸= □ then→ ev(repl(proj0(r)), repl(proj1(r)))σ
is in C. Hence, there exists a derivation Dr of F

′σ (by abuse of notation, we consider Dr

52

empty when F = ⊤) such that T ⊢ F . Finally, from item 4 and 5, we know that there
exists a conjunction of derivation DH of Hσ from C such that T ⊢ DH. This allows us
to build the following derivation Din:

H ∧ F ′ → input(U,U ′)

DH Dr

input(L,L′)

Hσ F ′σ

Let us now look at the derivation Dmsg. When (N,N ′) ∈ A, we know from item 1 of
Inv(T, τ) that there exists a derivation D of att(N,N ′). Hence, by taking any λ, we
can build the derivation Dmsg:

att(x, x′) ∧ att(y, y′) → msg(x, y, x′, y′)

D → att(b0[i], b0[i])

msg(N, b0[λ], N
′, b0[λ])

att(N,N ′) att(b0[λ], b0[λ])

Finally when (out(N,M);P, out(N ′,M ′);P ′) is in the multiset P, we know from Inv(T, τ)
that there exist U,U ′, V, V ′, Q,Q′,H, r, σ such that out(N,M);P = (out(U, V);Q)σ,
out(N ′,M ′);P ′ = (out(U ′, V ′);Q′)σ and [[|out(U, V);Q, out(U ′, V ′);Q′|]]Hr ⊆ C. In
particular, the clause H ∧ F → msg(U, V, U ′, V ′) is in C where F = ⊤ if r = □ or
F = ev(repl(proj0(r)), repl(proj1(r))).

From item 6, we additionally know that if r ̸= □ then → ev(repl(proj0(r)), repl(
proj1(r)))σ is in C. Hence, there exists a derivation Dr of Fσ (by abuse of notation,
we consider Dr empty when F = ⊤) such that T ⊢ F . Finally, from item 4 and 5, we
know that there exists a conjunction of derivation DH of Hσ from C such that T ⊢ DH.
This allows us to build the following derivation Dmsg:

H ∧ F → msg(U, V, U ′, V ′)

DH Dr

msg(N,M,N ′,M ′)

Hσ Fσ

This conclude with our proof that bad is derivable.

53

D Proofs of semantics conditions (Theorems 3 to 5)

By abuse of notation, when C −→i2 C′ by a rule without label, we may write C (ε,ε)−−−→i2 C′ where
ε stands for the empty word.

Given a trace T = C0
ℓ1−→i . . .

ℓn−→i Cn, for k ∈ {0, . . . , n}, we denote by T |k the trace

C0
ℓ1−→i . . .

ℓk−→i Ck. We use a similar notation for bitraces.
Given a bitrace T , a mapping ρ and i ∈ {0, 1}, we denote by Pi(ρ, T) the predicate that

holds when for all ev0, ev1 ∈ Ev! ∪ Ev!i, if T ⊢2 (ev0, ev1) and orepl(ev1−i) = o1−i[ã1−i] then
evi ∈ dom(ρ) and ρ(evi) = o1−i[ã1−i|λ].

Lemma 12. Let CI = ({{(P0, P1)}},A, ∅) be an initial instrumented biconfiguration. Let
Csat = saturate(CP(CI)). Let i ∈ {0, 1}. Let T ∈ wtrace(proji(CI)) with |T | = n. Let ρ be a
matching mapping from Pi to P1−i. Assume that:

• for all ev ∈ Ev! ∪ Ev!i, T ⊢ ev implies ev ∈ dom(ρ)

• for all C = (H → bad) ∈ Csat, ρ ⊢cs falsifyi(C)

For all k0 ∈ {0, . . . , n}, for all Tk0 ∈ wrtrace2(CI), if proji(Tk0) = T |k0 and Pi(ρ, Tk0) then
there exists Tn ∈ wtrace2(CI) such that proji(Tn) = T , Tn|k0 = Tk0 and Pi(ρ, Tn).

Proof. We prove the property for i = 0, the case i = 1 being symmetrical. Let us assume that

T = C0
ℓ1−→i . . .

ℓn−→i Cn where C0 = proji(CI). We will prove by induction on k ∈ {k0, . . . , n}
that there exists a bitrace Tk ∈ wrtrace2(CI) such that proj0(Tk) = T |k, Tk |k0 = Tk0 and
P0(ρ, Tk). Once this property proved, we conclude by taking k = n.

Base case k = k0: In this case, We take Tk = Tk0 . We have by hypothesis that proj0(Tk) = T |k
and P0(ρ, Tk). Hence the result holds.

Inductive step k > k0: In this case, by our inductive hypothesis, we know that there exists
a bitrace Tk−1 ∈ wrtrace2(CI) such that proj0(Tk−1) = T |k−1, Tk−1|k0 = Tk0 and P0(ρ, Tk−1).
By Lemma 5, we deduce that Tk−1 converges.

We do a case analysis on the transition rule Ck−1
ℓk−→wi Ck:

• Rule I-Repl: In such a case, ℓk ∈ Ev! and T, k ⊢ ℓk.Thus, by hypothesis, ℓk ∈ dom(ρ).
By definition of the transition, ℓk = repl(o[ã]) for some o ∈ N!o and ã. Moreover,
by definition of a matching mapping, ℓk ∈ dom(ρ) implies that ρ(ℓk) = o′[b̃] with
(o, o′) ∈ pm(CI) and arλCI (o

′) = |b̃|. Let us denote ev0 = repl(o[ã]). We have ev0 ∈ Ev!
with orepl(ev0) = o[ã].

We now show how to extend Tk−1 into a bitrace Tk. We aim to apply Lemma 4. Let us
take λ1, . . . , λr = b̃|λ. Consider (o

′
0[ã

′
0], o

′
1[ã

′
1]) ∈ Λ(Ck−1). By definition of the semantics

rules, T |k−1 ⊢2 (repl(o′0[ã
′
0]), repl(o

′
1[ã

′
1])) with o′0, o

′
1 ∈ N!.

Let us denote by ev′0, ev
′
1 the events repl(o

′
0[ã

′
0]), repl(o

′
1[ã

′
1]) respectively. Hence ev

′
0, ev

′
1 ∈

Ev! with orepl(ev′0) = o′0[ã
′
0] and orepl(ev′1) = o′1[ã

′
1]. Thanks to our inductive hypothesis,

we obtain ρ(ev′0) = o′1[ã
′
1|λ].

As ρ(ev′0) = o′1[ã
′
1|λ] and ρ(ev0) = o′[b̃], we deduce by definition of a matching mapping

that repl(o′0[ã
′
0]) ≺CI o[ã] implies o′1[ã

′
1|λ] ≺CI o′[b̃].

54

We now need to prove that o′1[ã
′
1|λ] ̸= o′[b̃]. Let us assume by contradiction that

o′1[ã
′
1|λ] = o′[b̃]. Hence, ρ(ev′0) = ρ(ev0). By definition of matching mapping, it implies

that o′0 = o and ã′0|λ = ã|λ. By Lemma 2, we deduce that ã′0 = ã and so o[ã] ∈ Λ(Ck−1)

which is in contradiction with the application of the rule Ck−1
ℓk−→i Ck. Therefore,

o′1[ã
′
1|λ] ̸= o′[b̃].

We can therefore apply Lemma 4, to obtain that Tk−1[k− 1]
(ev0,ev1)−−−−−→wi2 C′

k with ev1 =
repl(o′[ã′]), proj0(C′

k) = Ck and ã′|λ = b̃. As ρ(ev0) = o′[b̃], we conclude by taking

Tk = Tk−1
(ev0,ev1)−−−−−→wi2 C′

k.

• Rule I-In or I-Comm: By Lemma 1, we directly obtain that there exists a bicon-

figuration C′
k such that Tk−1

(ℓk,ℓ
′
k)−−−−→wi2 C′

k and proj0(C′
k) = Ck. Let us denote Tk =

Tk−1
(ℓk,ℓ

′
k)−−−−→wi2 C′

k. Hence proj0(Tk) = T |k.

Let us first assume that Ck−2 ̸
ℓk−1·ℓk−−−−→wi Ck. In such a case, for all ev0, ev1 ∈ Ev! ∪ Ev!i,

Tk ⊢2 (ev0, ev1) implies that Tk−1 ⊢2 (ev0, ev1). Hence we can directly conclude by our
inductive hypothesis.

Let us now assume that Ck−2
ℓk−1·ℓk−−−−→wi Ck. In such a case, ℓk−1 = repl(o0[ã0]) and ℓk =

pre(o′0[ã0|λ],M0) for some o0, o
′
0, ã,M0. Moreover, as proj0(Tk) = T |k, we deduce that

Tk, k − 1 ⊢2 (repl(o0[ã0]), repl(o1[ã1]) and Tk, k ⊢2 (repli(o0[ã0],M0), repli(o1[ã1],M1))
for some o1, ã1,M1.

Note that for all ev0, ev1 ∈ Ev! ∪ Ev!i, Tk ⊢2 (ev0, ev1) implies that either Tk−1 ⊢2

(ev0, ev1) or ev0 = repli(o0[ã0],M0) and ev1 = repli(o1[ã1],M1). We need to show that
ev0 ∈ dom(ρ) and ρ(ev0) = o1[ã1|λ].

As Ck−2 ̸ ℓk−1·ℓk−−−−→wi Ck, we directly have that T |k ⊢ repli(o0[ã0],M0). As T |k is a prefix
of T , we have that T ⊢ repli(o0[ã0],M0) and so by hypothesis ev0 ∈ dom(ρ). Note
that ℓk−1 = repl(o0[ã0]) also implies that T ⊢ repl(o0[ã0]) and so repl(o0[ã0]) ∈ dom(ρ).
By definition of a matching mapping, we deduce that ρ(ev0) = ρ(repl(o0[ã0])). By our
inductive hypothesis, we know that Tk−1, k−1 ⊢2 (repl(o0[ã0]), repl(o1[ã1]) implies that
ρ(repl(o0[ã0])) = o1[ã1|λ] and so we conclude that ρ(ev0) = o1[ã1|λ].

• Other rules: By Lemma 1, we directly obtain that there exists a biconfiguration C′
k such

that Tk−1
(ℓk,ℓ

′
k)−−−−→wi2 C′

k and proj0(C′
k) = Ck. Let us denote Tk = Tk−1

(ℓk,ℓ
′
k)−−−−→wi2 C′

k.
Hence proj0(Tk) = T |k.

For all these rules, ℓk and ℓ′k are not replication events so for all ev0, ev1 ∈ Ev! ∪ Ev!i,
Tk ⊢2 (ev0, ev1) implies that Tk−1 ⊢2 (ev0, ev1). Hence we can directly conclude by our
inductive hypothesis.

Theorem 3 (May-testing preorder). If for all T ∈ wtrace(proj0(CI)), there exists a session
matching ρ from P to Q such that:

• {ev ∈ Ev! ∪ Ev!i | T ⊢ ev} ⊆ dom(ρ)

• for all C ∈ Cbad
sat , T, ρ ⊢cs falsify0(C)

55

then π⊑m(CI) holds.

Proof. Let C0 = proj0(CI). Let T ∈ wtrace(C0) with T = C0
ℓ1−→i . . .

ℓn−→i Cn. We need to
show that there exists a convergent bitrace T ′ ∈ wtrace2(C) such that proj0(T

′) = T .
By hypothesis, we know that there exists a matching mapping ρ from P to Q such that:

• for all ev ∈ Ev! ∪ Ev!i, T ⊢ ev implies ev ∈ dom(ρ)

• for all C = (H → bad) ∈ Csat, ρ ⊢cs falsify0(C)

Let us denote T0 the empty bitrace from CI , i.e. CI does not move. Since no events ev, ev′ can
be such that T0 ⊢2 (ev, ev′), we deduce that P0(ρ, T0) holds. Thus, by taking k0 = 0, we have
that T0 ∈ wrtrace2(CI), proj0(T0) = T |0 and P0(ρ, T0). We can therefore apply Lemma 12
which allows us to deduce that there exists Tn ∈ wtrace2(CI) such that proj0(Tn) = T ,
Tn|0 = T0 and P0(ρ, Tn). By applying Lemma 5, we conclude that Tn converges and so the
result holds.

Theorem 4 (Observational preorder). If there exists a session matching ρ from P to Q such
that:

• dom(ρ) = {ev ∈ Ev!o ∪ Ev!i | T ⊢ ev ∧ T ∈ wtrace(proj0(CI))}

• for all T ∈ wtrace(proj0(CI)), if ρ′ = ρ ∪ [repl(o) 7→ ρ(ev) | T ⊢ repli(o,M) = ev] then
for all C = (H → bad) ∈ Csat, T, ρ

′ ⊢cs falsify0(C)

then π⊑o(CI) holds.

Proof. Let us define the predicate on biconfigurations π such that π(C) holds when there
exists T ∈ wtrace2(CI) such that |T | = n, T [n] = C and for all ev0, ev1 ∈ Ev!o ∪ Ev!i, if
T ⊢2 (ev0, ev1) and orepl(ev1) = o1[ã1] then ev0 ∈ dom(ρ) and ρ(ev0) = o1[ã1|λ].

To show that π⊑o(CI), we will show that π(CI) holds and for all biconfigurations C such
that π(C) holds, we have

1. C converges

2. if proj0(C)
ℓ0−→wi C′

0 then C (ℓ0,ℓ1)−−−−→wi2 C′, proj0(C′) = C′
0 and π(C′) holds for some C′, ℓ1.

First, consider the empty trace T ∈ wtrace2(CI), i.e. the trace that does not move from
CI . Hence |T | = 0 and T [0] = CI . Since no events ev, ev′ can be such that T ′ ⊢2 (ev, ev′), we
deduce that π(CI) holds.

Let now prove that for all biconfigurations C, if π(C) holds then C converges. Since π(C)
holds, there exists T ∈ wtrace2(CI) such that |T | = n, T [n] = C and for all ev0, ev1 ∈ Ev!o∪Ev!i,
if T ⊢2 (ev0, ev1) and orepl(ev1) = o1[ã1] then ev0 ∈ dom(ρ) and ρ(ev0) = o1[ã1|λ].

Let us define ρ′ = ρ ∪ [repl(o) 7→ ρ(ev) | proj0(T) ⊢ repli(o,M) = ev]. By hypothesis
of the theorem, we know that for all C = (H → bad) ∈ Csat, ρ

′ ⊢cs falsify0(C). Moreover,
by definition of T ∈ wrtrace2(CI), for all ev0, ev1 ∈ Ev! such that T, i ⊢2 (ev0, ev1), either
ev0, ev1 ∈ Ev!o or there exists ev′0, ev

′
1 ∈ Ev!i such that orepl(ev0) = orepl(ev′0), orepl(ev1) =

orepl(ev′1) and T, i + 1 ⊢2 (ev′0, ev
′
1). Therefore, for all ev0, ev1 ∈ Ev!, if T ⊢2 (ev0, ev1)

then ev0 ∈ dom(ρ′). In the former case, we directly have that ρ(ev0) = o1[ã1|λ] where
orepl(ev1) = o1[ã1] and so ρ′(ev0) = o1[ã1|λ]. In the latter case, we know that ρ(ev′0) = o1[ã1|λ]

56

where orepl(ev′1) = o1[ã1]. By construction of ρ′, ρ(ev′0) = ρ(ev0). Therefore, ρ
′(ev0) = o1[ã1|λ]

which allows to conclude that T converges by applying Lemma 5. As T [n] = C, C also
converges.

We now prove the final property. Assume that proj0(C)
ℓ0−→wi C′

0. Let us denote Te =

proj0(T)
ℓ0−→wi C′

0. We have that Te ∈ wtrace(proj0(CI)). Thus, let us denote by ρ′ =
ρ ∪ [repl(o) 7→ ρ(ev) | Te ⊢ repli(o,M) = ev]. We deduce by hypothesis that for all C =
(H → bad) ∈ Csat, ρ

′ ⊢cs falsify0(C). Moreover, by definition of Te ∈ wtrace(proj0(CI)) and
by construction of ρ′, we deduce that for all ev ∈ Ev! ∪ Ev!i, T

′ ⊢ ev implies ev ∈ dom(ρ′).
Similarly to above, we can show that for all ev0, ev1 ∈ Ev! such that T ⊢2 (ev0, ev1), we

have that ρ′(ev0) = o1[ã1|λ] where orepl(ev1) = o1[ã1] and so ρ′(ev0) = o1[ã1|λ], which allows
us to deduce that P0(ρ

′, T).
As |T | = n and |Te| = n+1 or |Te| = n+2, we apply Lemma 12 with k0 = n and Tk0 = T ,

which allows us to obtain that there exists T ′ ∈ wtrace2(CI) such that proj0(T
′) = Te, T

′
|n = T

and P0(ρ
′, T ′). Since T ′

|n = T and proj0(T
′) = Te, we deduce that C (ℓ0,ℓ1)−−−−→wi2 T ′[|Te|] and

proj0(T
′[|Te|]) = C′

0. Finally, as P0(ρ
′, T ′) and dom(ρ) = dom(ρ′)|Ev!i∪Ev!o , we conclude that

π(T ′[|Te|]) holds.

Theorem 5 (Observational equivalence). If there exists two matching mapping ρ0 and ρ1
from P to Q and Q to P respectively such that for all i ∈ {0, 1},

• dom(ρi) = {ev ∈ Ev! ∪ Ev!i | T ⊢ ev ∧ T ∈ wtrace(proji(CI))}

• for all T ∈ wtrace(proji(CI)), for all C = (H → bad) ∈ Csat, T, ρi ⊢cs falsifyi(C)

• for all ev0 ∈ dom(ρ0), for all ev1 ∈ dom(ρ1), if orepl(ev0) = o0[ã0] and orepl(ev1) =
o1[ã1] then o0[ã0|λ] = ρ1(ev1) iff o1[ã1|λ] = ρ0(ev0)

then π≈o(CI) holds.

Proof. Let us define the predicate on biconfigurations π such that π(C) holds when there
exists T ∈ wtrace2(CI) such that |T | = n, T [n] = C, P0(ρ0, T) and P1(ρ1, T).

To show that π≈o(CI), we will show that π(CI) holds and for all biconfigurations C such
that π(C) holds, we have that

1. C converges

2. for all i ∈ {0, 1}, if proji(C)
ℓi−→wi C′

i then C (ℓ0,ℓ1)−−−−→wi2 C′, proji(C′) = C′
i and π(C′) holds

for some C′, ℓ1−i.

First, consider the empty trace T ∈ wtrace2(CI), i.e. the trace that does not move from
CI . Hence |T | = 0 and T [0] = CI . Since no events ev, ev′ can be such that T ′ ⊢2 (ev, ev′), we
deduce that π(CI) holds.

Let now prove that for all biconfigurations C, if π(C) holds then C converges. Since π(C)
holds, there exists T ∈ wtrace2(CI) such that |T | = n, T [n] = C, P0(ρ0, T) and P1(ρ1, T).
Moreover by hypothesis, for all C = (H → bad) ∈ Csat, ρ0 ⊢cs falsify0(C). By Lemma 5 we
deduce that T converges and so T [n] converges too.

Let i ∈ {0, 1} such that proji(C)
ℓi−→wi C′

i. Let Te = proji(T)
ℓi−→wi C′

i. Hence, Te ∈
wtrace(proji(CI)) with |Te| = ne. By hypothesis of the theorem, we know that for all ev ∈

57

Ev!∪Ev!i, Te ⊢ ev implies ev ∈ dom(ρi). Moreover, we also know that for all C = (H → bad) ∈
Csat, ρ ⊢cs falsifyi(C). Therefore, by taking k0 = n, Tk0 = T , we have proji(Tk0) = Te|k0 and
Pi(ρi, T). This allows us to apply Lemma 12 which implies that there exists T ′ ∈ wtrace2(CI)
such that proji(T

′) = Te, T
′
|n = T and Pi(ρi, T

′).
It remains to show that P1−i(ρ1−i, T

′) holds. Let ev0, ev1 ∈ Ev! ∪ Ev!i such that T ′ ⊢2

(ev0, ev1). Let us assume that orepl(ev0) = o0[ã0] and orepl(ev1) = o1[ã1]. We know that ev0 ∈
dom(ρ0) and ev1 ∈ dom(ρ1). We know that Pi(ρi, T

′) holds, hence ρi(evi) = o1−i[ã1−i|λ].
Therefore, by the last hypothesis of the theorem, we deduce that oi[ãi|λ] = ρ1−i(ev1−i). We
can conclude that P1−i(ρ1−i, T

′) holds.

E Proofs of practical verification (Theorems 6 to 8)

For this proof, we will rely on the fact that the set of terms is countable. We denote by θ the
bijection from terms to N.

Theorem 6 (May-testing preorder). If for all C ∈ Cbad
sat , we can associate a skolemisation

substitution σC of falsify0(C) such that for all C0, C1 ∈ C (C0, σC0 and C1, σC1 are renamed
such that they have distinct variables) with falsify0(Ci) = (Ωi, ϕi) and H ′

i = proj0(Hi), for all
ev i ∈ dom(Ωi) for i = 0, 1, we have:

1. if (ev ′0, ev
′
1) = same(ev0, ev1), α = mgu(ev ′0, ev

′
1) then:

(H ′
0 ∧H ′

1 ∧ Ω(ev0)σC0 ̸= Ω(ev1)σC1 → bad)α↓ = ⊥

2. if α = mgu(Ω(ev0)σC0 ,Ω(ev1)σC1) then:

(H ′
0 ∧H ′

1 ∧ orepl(ev0)|λ ̸= orepl(ev1)|λ → bad)α↓ = ⊥

then π⊑m(CI) holds.

Proof. To prove that π≈m(CI) holds, we will rely on Theorem 3. Let T ∈ wtrace(proj0(CI)).
We need to build a session matching ρ from P to Q such that:

• dom(ρ) = {ev ∈ Ev! ∪ Ev!i | T ⊢ ev}

• for all C = (H → bad) ∈ Csat, ρ ⊢cs falsify0(C)

Consider {Ci = (Hi → bad)}ni=1 = Cbad
sat and lets consider σ1,. . . , σn their Skolemization.

We start by building ρ0 as follows: If there exists a substitution γ and i ∈ {1, . . . , n}
such that T ⊢ Hiγ then for all ev ∈ dom(Ωi), if Ωi(ev)σi = o[M1, . . . ,Mk] then ρ0(evγ) =
o[θ(M1γ), . . . , θ(Mkγ)].

Note that for ρ0 to be a mapping, our definition should ensure that no two different
occurrence pattern names are given for the same argument. In other word, we need to show
that if there exist two substitutions γ1, γ2 and i1, i2 ∈ {1, . . . , n} and ev1 ∈ Ωi1 and ev2 ∈ Ωi2

with y1 = Ωi1(ev1) and y2 = Ωi2(ev2) such that

• T ⊢ Hi1γ1, T ⊢ Hi2γ2

• y1σi1 = o1[M1, . . . ,Mk1]

58

• y2σi2 = o2[N1, . . . , Nk2]

• ev1γ1 = ev2γ2

then o1[θ(M1γ1), . . . , θ(Mk1γ1)] = o2[θ(N1γ2), . . . , θ(Nk2γ2)].
Let’s assume the four hypotheses and assume by contradiction that o1[θ(M1γ1), . . . , θ(

Mk1γ1)] ̸= o2[θ(N1γ2), . . . , θ(Nk2γ2)]. Since θ is a bijection, we have o1[M1γ1, . . . ,Mk1γ1] ̸=
o2[N1γ2, . . . , Nk2γ2].

Since ev1γ1 = ev2γ2 and ev1, ev2 have distinct variables, we deduce that ev1 and ev2 are
unifiable and so if α = mgu(ev1, ev2) then γ1γ2 = γ2γ1 = αγ and

• o1[M1γ1, . . . ,Mk1γ1] = o1[M1, . . . ,Mk1]αγ and o2[N1γ2, . . . , Nk2γ2] = o2[N1, . . . , Nk2]αγ

• ev1γ1 = ev1αγ and ev2γ2 = ev2αγ

• Hi1γ1 = Hi1αγ and Hi2γ2 = Hi2αγ

Thus, γ |= o1[M1, . . . ,Mk1]α ̸= o2[N1, . . . , Nk2]α and T ⊢ Hi1αγ ∧ Hi2αγ. This is in con-
tradiction with the first hypothesis of the theorem. Hence, o1[θ(M1γ1), . . . , θ(Mk1γ1)] =
o2[θ(N1γ2), . . . , θ(Nk2γ2)].

Let us show that ρ0 is matching mapping from P to Q. We need to verify the four bullet
points of Definition 16.

• Direct by construction.

• The second bullet point is directly derived from Item 2 of Definition 21 and by con-
struction of ρ0

• For the third bullet point, we can apply the a similar proof to the one showing that no
two different occurrence patterns are given for the same argument .

• Consider ev1, ev2 ∈ dom(ρ0) such that ρ(ev1) = ρ(ev2). By contradiction, assume that
ev1 ̸= ev2. By definition, ev1, ev2 ∈ dom(ρ0) implies there exists γ1, γ2 and i1, i2 ∈
{1, . . . , n} such that for all j ∈ {1, 2}, T ⊢ Hijγj and there exists (ev′j , ϕj , yj) ∈ Mj such

that yjσj = oj [M
j
1 , . . . ,M

j
kj
], evj = ev′jγj and ρ0(evj) = oj [θ(M

j
1γj), . . . , θ(M

j
kj
γj)].

Since ρ0(ev1) = ρ0(ev2), we deduce that o1 = o2, k1 = k2 and M1
ℓ γ1 = M2

ℓ γ2 for all

j ∈ {1, . . . , k1}. As the variables of oj [M
j
1 , . . . ,M

j
kj
], j = 1, 2 are distincts, we deduce

that o1[M
1
1 , . . . ,M

1
k1
] and o2[M

2
1 , . . . ,M

2
k2
] are unifiable. Let us denote by α their most

general unifier. There exists γ such that γ1γ2 = γ2γ1 = αγ and:

– o1[M
1
1γ1, . . . ,M

1
k1
γ1] = o1[M

1
1 , . . . ,M

1
k1
]αγ = y1σ1αγ and o2[M

2
1γ2, . . . ,M

2
k2
γ2] =

o2[M
2
1 , . . . ,M

2
k2
]αγ = y2σ2αγ

– ev1 = ev′1γ1 = ev′1γ1γ2 = ev′1αγ and ev2 = ev′2γ2 = ev′2γ2γ1 = ev′2αγ and ev1 ̸= ev2

– Hi1γ1 = Hi1αγ and Hi2γ2 = Hi2αγ

Thus, γ |= ev′1α ̸= ev′2α and T ⊢ Hi1αγ ∧ Hi2αγ. This is in contradiction with the
second hypothesis of the theorem. Hence, ev1 = ev2.

59

This allows us to conclude that ρ0 is a matching mapping from P to Q.

It remains to show that for all C = (H → bad) ∈ Csat, T, ρ0 ⊢cs falsify0(C). Let
falsify0(C) = (Ω, ϕ′). Let H ′ ∧ ϕ = proj0(H). Let γ be a substitution such that T ⊢
H ′γ ∧ ϕγ and for all ev ∈ dom(Ω) with y = Ω(ev), ev ∈ Ev! ∪ Ev!i implies evγ ∈ dom(ρ0)
and yγ = ρ(evγ). By construction, we know that there exists a skolemization σ such that
yσ = o[M1, . . . ,Mk] implies yγ = o[M1γ, . . . ,Mkγ]. As yσγ = yγ and by construction of ϕ′,
we have that ϕ′σγ = ϕ′γ. By definition of a skolemization, we know that ϕ |= ϕ′σ and so we
conclude that |= ϕ′γ.

Theorem 7 (Observational preorder). If for all C ∈ Cbad
sat , we can associate a skolemisation

substitution σC of falsify0(C) such that for all Ci = (Hi∧ϕ′
i → bad) ∈ Cbad

sat (taking Ci and σCi

renamed) with falsify0(Ci) = (Ωi, ϕi), for all ev i ∈ dom(Ωi) with Φi = ϕ′
i|vars(ev i)

for i = 0, 1,
we have:

1. if (ev ′0, ev
′
1) = same(ev0, ev1), α = mgu(ev ′0, ev

′
1) then:

(Φ0 ∧ Φ1 ∧ Ω(ev0)σC0 ̸= Ω(ev1)σC1 → bad)α↓ = ⊥

2. if α = mgu(Ω(ev0)σC0 ,Ω(ev1)σC1) then:

(Φ0 ∧ Φ1 ∧ orepl(ev0)|λ ̸= orepl(ev1)|λ → bad)α↓ = ⊥

then π⊑o(C) holds.

Proof. To prove that π⊑o(CI) holds, we will rely on Theorem 4. Let T ∈ wtrace(proj0(CI)).
We need to build a matching mapping ρ from P to Q such that:

• {ev ∈ Ev!o ∪ Ev!i | T ⊢ ev ∧ T ∈ wtrace(proj0(CI))} ⊆ dom(ρ)

• for all T ∈ wtrace(proj0(CI)), if ρ′ = ρ ∪ [repl(o) 7→ ρ(ev) | T ⊢ repli(o,M) = ev] then
for all C = (H → bad) ∈ Csat, T, ρ

′ ⊢cs falsify0(C)

We start by building ρ0 as follows: If there exist T ∈ wtrace(proj0(CI)), a substitution γ
and C ∈ C with falsify0(C) = (Ω, ϕ), H = proj0(C) such that T ⊢ Hγ then for all ev ∈ Ω
with y = Ω(ev), evγ ∈ dom(ρ0) and ρ0(evγ) = yσCγ.

Note that for ρ0 to be a mapping, our definition should ensure that no two different
occurrence pattern names are given for the same argument. In other word, we need to show
that if there exist two traces T1, T2 ∈ wtrace(proj0(CI)), two substitutions γ1, γ2, two clauses
C1, C2 with falsify0(C1) = (Ω1, ϕ1) with H1 = proj0(C1) and falsify0(C2) = (Ω2, ϕ2) with
H2 = proj0(C2), and ev1 ∈ dom(Ω1) with y1 = Ω1(ev1) and ϕev1 = ϕ(C1)|vars(ev1), and
ev2 ∈ dom(Ω2) with y2 = Ω2(ev2) and ϕev2 = ϕ(C2)|vars(ev2) such that

• T1 ⊢ H1γ1, T2 ⊢ H2γ2

• ev1γ1 = ev2γ2

then y1σC1γ1 = y2σC2γ2.
Let us assume the two hypotheses and assume by contradiction that y1σC1γ1 ̸= y2σC2γ2.

Since ev1γ1 = ev2γ2 and ev1, ev2 have distinct variables, we deduce that ev1, ev2 are unifiable
and so if α = mgu(ev1, ev2) then γ1γ2 = αγ for some γ. By construction, for i ∈ {1, 2}, if

60

Ci = (H ′
i∧ϕ′

i) then ϕevi = ϕ′
i|fv(()evi). Furthermore, H1 = proj0(H

′
i)∧ϕ′

i|Xi
where fv(evi) ⊆ Xi.

Hence, Ti ⊢ Hiγi implies that |= ϕeviγi. As ϕeviγi = ϕeviαγ, we deduce that γ |= ϕeviα.
We also have for i ∈ {1, 2}, yiσCiγi = yiσCiαγ. Hence, γ |= y1σC1α ̸= y2σC2α. This allows

us to deduce that γ |= ϕev1α ∧ ϕev2α ∧ y1σC1α ̸= y2σC2α which is in contradiction with the
first hypothesis of the theorem. We conclude that y1σC1γ1 = y2σC2γ2.

Let us show that ρ0 is matching mapping from P to Q. We need to verify the three bullet
points of Definition 16.

• Direct by construction.

• The second bullet point is directly derived from Item 2 of Definition 21 and by con-
struction of ρ0

• For the third bullet point, we can apply the a similar proof to the one showing that no
two different occurrence patterns are given for the same argument .

• Consider ev1, ev2 ∈ dom(ρ0) such that ρ(ev1) = ρ(ev2). By contradiction, assume that
ev1 ̸= ev2. By definition, ev1, ev2 ∈ dom(ρ0) implies there exist T1, T2 ∈ wtrace(proj0(CI)),
two substitutions γ1, γ2 and C1, C2 ∈ C with falsify0(C1) = (Ω1, ϕ1) with H1 = proj0(C1)

and falsify0(C2) = (Ω2, ϕ2) with H2 = proj0(C2), and ev′1 ∈ dom(Ω1) with y1 =
Ω1(ev

′
1) and ϕev′1

= ϕ(C1)|vars(ev′1), and ev′2 ∈ dom(Ω2) with y2 = Ω2(ev
′
2) and ϕev′2

=
ϕ(C2)|vars(ev′2) such that for all i ∈ {1, 2}, Ti ⊢ Hiγi and ρ(evi) = yiσCiγi.

Since ρ0(ev1) = ρ0(ev2) and the variables of σC1 and σC2 are distinct, we deduce that
y1σC1 and y2σC2 are unifiable. Let α = mgu(y1σC1 , y2σC2). There exists γ such that
γ1γ2 = γ2γ1 = αγ and:

– y1σC1αγ = y2σC2αγ

– ev1 = ev′1γ1 = ev′1αγ and ev2 = ev′2γ2 = ev′2αγ

– H1γ1 = H1αγ and H2γ2 = H2αγ

Once again by construction of H1 and H2, T1 ⊢ H1γ1 and T2 ⊢ H2γ2 implies that
|= ϕev′1

γ1 and |= ϕev′2
γ2. Hence γ |= ϕev′1

α∧ϕev′2
γ∧ev′1α ̸= ev′2α. This is in contradiction

with the second hypothesis of the theorem. Hence, ev1 = ev2.

This allows us to conclude that ρ0 is a matching mapping from P to Q.

It remains to show that for all T ∈ wtrace(proj0(CI)), if ρ′ = ρ0 ∪ [repl(o) 7→ ρ0(ev) | T ⊢
repli(o,M) = ev] then for all C = (H → bad) ∈ Csat, T, ρ

′ ⊢cs falsify0(C). Notice that if
repli(o,M) ∈ dom(ρ0) and repl(o) ∈ dom(ρ0) then by item 3 of Definition 21, we know that
ρ0(repli(o,M)) = ρ0(repl(o)). Hence, ρ

′ is also a matching mapping from P to Q.
More specifically, if falsify0(C) = (Ω, ϕ) with H = proj0(C) and γ is a substitution such

that T ⊢ Hγ and for all ev ∈ dom(Ω) with y = Ω(ev) and ϕev = ϕ(C)|vars(ev), ev ∈ Ev! ∪ Ev!i
implies evγ ∈ dom(ρ′) and yγ = ρ(evγ) then by construction, we know that evγ ∈ dom(ρ0)
and ρ(evγ) = yσCγ. As yσCγ = yγ and by construction of ϕ, we have that ϕσCγ = ϕγ. By
definition of a skolemization, we know that if H = H ′ ∧ ϕ′ then T ⊢ Hγ implies that |= ϕ′γ
which implies that |= ϕσCγ and so |= ϕγ.

Theorem 8 (Observational equivalence). If there exists a bijection β0 from the occurrence
replication names of P to the ones of Q (we denote β1 its inverse) such that for all i ∈ {0, 1},
for all oi, o

′
i ∈ dom(ρi),

61

1. βi(oi) = o1−i implies (o0, o1) ∈ pm(C) and arλCI (o0) = arλCI (o1)

2. oi ⪯CI o′i if and only if βi(oi) ⪯CI βi(o
′
i)

and for all C = (H ∧ ϕ → bad) ∈ Cbad
sat such that we have falsifyi(C) = (Ω, ϕ′),

3. if σ = {Ω(ev) 7→ βi(o)[ã|λ] | ev ∈ dom(Ω) ∧ orepl(ev) = o[ã]} then ϕ|varsi(C) |= ϕ′σ.

then π≈o(C) holds.

Proof. To prove that π≈o(CI) holds, we will rely on Theorem 5. Therefore, we need to build
two matching mapping ρ0 and ρ1 from P0 to P1 and P1 to P0 respectively such that for all
i ∈ {0, 1},

• dom(ρi) = {ev ∈ Ev! ∪ Ev!i | T ⊢ ev ∧ T ∈ wtrace(proji(CI))}

• for all T ∈ wtrace(proji(CI)), for all C = (H → bad) ∈ Csat, T, ρi ⊢cs falsifyi(C)

• for all ev0 ∈ dom(ρ0), for all ev1 ∈ dom(ρ1), if orepl(ev0) = o0[ã0] and orepl(ev1) = o1[ã1]
then o0[ã0|λ] = ρ1(ev1) iff o1[ã1|λ] = ρ0(ev0)

Let us build ρ0 and ρ1 as follows: For all i ∈ {0, 1}, for all T ∈ wtrace(proji(CI)), if T ⊢ ev
with orepl(ev) = o[ã] then ev ∈ dom(ρi) and ρi(ev) = βi(o)[ã|λ].

We show that for all i ∈ {0, 1}, ρi is a matching mapping from Pi to P1−i. We need to
verify the three bullet point of Definition 16.

• Direct by construction and by the first hypothesis of the theorem.

• Direct once again by construction and by the second hypothesis of the theorem.

• Consider ev1, ev2 ∈ dom(ρi) such that ρi(ev1) = ρi(ev2) with orepl(ev1) = o1[ã1] and
orepl(ev2) = o2[ã2]. Since ρi(ev1) = ρi(ev2), we deduce that βi(o1)[ã1|λ] = βi(o2)[ã2|λ].
This implies that βi(o1) = βi(o2) and ã1|λ = ã2|λ. As βi is a bijection, we deduce that
o1 = o2 which allows us to conclude.

Let us now show the second bullet point of Theorem 5. Let T ∈ wtrace(proji(CI)). Let
C ∈ Csat with falsifyi(CI) = (Ω, ϕ′) with H ∧ ϕ = proji(C). Let γ be a substitution such that
T ⊢ Hγ ∧ ϕγ and for all (ev, ϕev, y) ∈ M, ev ∈ Ev! ∪ Ev!i implies evγ ∈ dom(ρi) and yγ =
ρi(evγ). Note that if orepl(ev) = o[ã] then by definition ρi(evγ) = βi(o)[ãγ|λ] = βi(o)[ã|λ]γ.

Thus, if we define σ = {y 7→ βi(o)[ã|λ] | (ev, ϕev, y) ∈ M∧orepl(ev) = o[ã]}, we obtain that
yγ = βi(o)[ã|λ]γ = yσγ. Thus, by construction ϕ′σγ = ϕ′γ. However by the third hypothesis
of the theorem, we know that ϕ |= ϕ′σ. Since T ⊢ Hγ ∧ ϕγ, we deduce that |= ϕγ and so
|= ϕ′σγ and so |= ϕ′γ. This conclude the proof that T, ρi ⊢s falsifyi(CI).

Let us show the last bullet point of Theorem 5. Consider ev0 ∈ dom(ρ0) and ev1 ∈ dom(ρ1)
such that orepl(ev0) = o0[ã0] and orepl(ev1) = o1[ã1]. By definition of ρ0 and ρ1, we have that
o0[ã0|λ] = ρ1(ev1) iff o0[ã0|λ] = β1(o1)[ã1|λ] iff (o0 = β1(o1) and ã0|λ = ã1|λ) iff (β0(o0) = o1
and ã0|λ = ã1|λ) iff β0(o0)[ã0|λ] = o1[ã1|λ] iff ρ0(ev0) = o1[ã1|λ].

62

	Introduction
	Unlinkability As a Motivating Example
	Model
	Syntax
	Operational Semantics
	Security Properties

	Instrumentation
	Instrumented Processes
	From Processes to Instrumented Processes
	Instrumented semantics
	Convergence equivalence
	Axioms

	Clause generation
	Clauses for the attacker
	Clauses for the protocol
	Soundness

	Semantics Conditions for Equivalence
	Completion of Horn clauses
	Session matching
	Falsifying conditions

	Practical Verification of Equivalences
	Skolemisation
	Experiments

	Conclusion
	Index: Correspondence with CSF'23 Conference Paper
	Proof of Theorem 1
	Link Between Regular and Instrumented Semantics
	Convergence and May Testing
	Convergence and Bisimilarity

	Properties on occurrences
	Proof of lem:soundnesscorrespondencequerybitrace
	Proofs of semantics conditions (th:verif may testing,th:verif obs preorder,th:verif diff)
	Proofs of practical verification (th:generation may,th:generation obs preorder,th:generation diff)

