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Abstract

We study the automated verification of behavioural equivalences in the applied pi
calculus, an essential problem in formal, symbolic analysis of cryptographic protocols.
We establish new complexity results for static equivalence, trace equivalence and labelled
bisimilarity and propose a new decision procedure for these equivalences. Our procedure
is the first tool to decide trace equivalence and labelled bisimilarity exactly for a family
of equational theories, namely those that can be represented by a subterm convergent
destructor rewrite system. Finally, we implement the procedure in a new tool, called
Deepsec and demonstrate the applicability of the tool on several case studies.

1 Introduction

The use of automated, formal methods has become indispensable for analysing complex
security protocols, such as those for authentication, key exchange and secure channel es-
tablishment. Nowadays there exist mature, fully automated such analysers; among oth-
ers AVISPA [ABB+05], ProVerif [BSC16], Scyther [Cre08], Tamarin [SMCB13] or Maude-
NPA [SEMM14]. These tools operate in so-called symbolic models, rooted in the seminal
work by Dolev and Yao [DY81]: the attacker has full control of the communication network,
unbounded computational power, but cryptography is idealised. This model is well suited
for finding attacks in the protocol logic, and tools have indeed been extremely effective in
discovering this kind of flaw or proving their absence.

While most works investigate reachability properties, a recent trend consists in adapting
the tools—and the underlying theory—for the more complex indistinguishability properties.
Such properties are generally modelled as a behavioural equivalence (bisimulation or trace
equivalence) in a dedicated process calculus such as the Spi [AG99] or applied pi calcu-
lus [AF04]. A typical example is real-or-random secrecy: after interacting with a protocol, an
adversary is unable to distinguish the real secret used in the protocol from a random value.
Privacy-type properties can also be expressed as such: anonymity may be modeled as the
adversary’s inability to distinguish two instances of a protocol executed by different agents;
vote privacy [DKR09] has been expressed as indistinguishability of the situations where the
votes of two agents have been swapped or not; unlinkability [ACRR10] is seen as indistin-
guishability of two sessions, either both executed by the same agent A, or by two different
agents A and B.
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Related work

The problem of analysing security protocols is undecidable in general but several decidable
subclasses have been identified. While many complexity results are known for trace proper-
ties [DLM04, RT03], the case of behavioural equivalences remains mostly open. When the
attacker is an eavesdropper and cannot interact with the protocol, the indistinguishability
problem—static equivalence—has been shown ptime for large classes of cryptographic primi-
tives [AC06, CDK12, CBC10]. For active attackers, bounding the number of protocol sessions
is often sufficient to obtain decidability [RT03] and is of practical interest: most real-life at-
tacks indeed only require a small number of sessions. In this context Baudet [Bau05], and
later Chevalier and Rusinowtich [CR10], showed that real-or-random secrecy was conp for
cryptographic primitives that can be modelled as subterm convergent rewrite systems, by
checking whether two constraint systems admit the same set of solutions. These procedures
do however not allow for else branches, nor do they verify trace equivalence in full general-
ity. In [CCD13], Cheval et al. have used Baudet’s procedure as a black box to verify trace
equivalence of determinate processes. This class of processes is however insufficient for most
anonymity properties. Finally, decidability results for an unbounded number of sessions were
proposed in [CCD15b, CCD15a], but with severe restrictions on processes and equational
theories.

Tool support also exists for verifying equivalence properties. We start discussing tools
that are limited to a bounded number of sessions. The Spec tool [TD10, TNH16] verifies a
sound symbolic bisimulation, but is restricted to particular cryptographic primitives (pair-
ing, encryption, signatures and hash functions) and does not allow for else branches. The
Apte tool [Che14] covers the same primitives but allows else branches and decides trace
equivalence exactly. On the contrary, the Akiss tool [CCCK16] allows for user-defined cryp-
tographic primitives. Partial correctness of Akiss is shown for primitives modelled by an
arbitrary convergent rewrite system that has the finite variant property [CD05]. Termina-
tion is additionally shown for subterm convergent rewrite systems. However, Akiss does
only decide trace equivalence for a class of determinate processes; for other processes trace
equivalence can be both over- and under-approximated which proved to be sufficient on many
examples. The recent SAT-Equiv tool [CDD17] uses a different approach: it relies on Graph
Planning and SAT solving to verify trace equivalence, rather than a dedicated procedure.
The tool is extremely efficient and several orders of magnitude faster than other tools. It
does however not guarantee termination and is currently restricted to pairing and symmetric
encryption and only considers a class of simple processes (a subclass of determinate processes)
that satisfy a type-compliance condition. These restrictions severely limit its scope.

Several other tools support verification of equivalence properties, even for an unbounded
number of sessions. This is the case of ProVerif [BAF05], Tamarin [BDS15] and Maude
NPA [SEMM14] which all allow for user-defined cryptographic primitives. However, given
that the underlying problem is undecidable, these tools may not terminate. Moreover, they
only approximate trace equivalence by verifying a more fine-grained equivalence, called diff-
equivalence. This equivalence is too fine-grained on many examples. While some recent
improvements on ProVerif [CB13, BS16] helps covering more protocols, general verifica-
tion of trace equivalence is still out of scope. For instance, the verification by Arapinis
et al. [AMR+12] of unlinkability in the 3G mobile phone protocols required some “tricks” and
approximations of the protocol to avoid false attacks. In [CGLM17], Cortier et al. develop
a type system and automated type checker for verifying equivalences. While this tool is ex-
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tremely efficient, it only covers a fixed set of cryptographic primitives (the same as Spec and
Apte) and verifies an approximated equivalence, similar to the diff-equivalence. A completely
different approach has been taken by Hirschi et al. [HBD16], identifying sufficient conditions
provable by ProVerif for verifying unlinkability properties, implemented in the tool Ukano,
a front-end to the ProVerif tool. Ukano does however not verify equivalence properties in
general.

Contributions We significantly improve the theoretical understanding and the practical
verification of equivalence when the number of protocol sessions is bounded. We emphasise
that even in this setting, the system under study has an infinite state space due to the term
algebra modelling cryptographic primitives. Our work targets the wide class of cryptographic
primitives that can be represented by a subterm convergent rewriting system. Concretely, we
provide

1. new tight complexity results for static equivalence (∼), trace equivalence (≈t) and
labelled bisimilarity (≈`);

2. a novel procedure for deciding trace equivalence and labelled bisimilarity for the class of
cryptographic primitives modelled by a destructor subterm convergent rewrite system;

3. an implementation of our procedure for trace equivalence in a new tool called Deepsec
(DEciding Equivalence Properties for SECurity protocols).

We detail the three contributions below.

Complexity. We provide the first complexity results for deciding trace equivalence and
labelled bisimilarity in the applied pi calculus, without any restriction on the class of protocols
(other than bounding the number of sessions). In particular, our results are not restricted
to determinate processes, allow for else branches and do not approximate equivalence. Let
us also highlight one small, yet substantial difference with existing work: we do not consider
cryptographic primitives (rewrite systems) as constants of the problem. As most modern
verification tools allow for user-specified primitives [BSC16, SMCB13, SEMM14, CCCK16],
our approach seems to better fit this reality. Typically, all existing procedures for static
equivalence can only be claimed ptime because of this difference and are actually exponential
in the sizes of signature or equational theory. Our complexity results are summarised in fig. 1.
All our lower bounds hold for subterm convergent rewrite systems (destructor or not) and
even for the positive fragment (without else branches). En passant, we present results for
the pi calculus: although investigated in [BT00], complexity was unknown when restricted
to a bounded number of sessions. Still, our main result is the conexp completeness (and
in particular, the decidability) of trace equivalence and labelled bisimilarity for destructor
subterm convergent rewrite systems.

Decision procedure. We present a novel procedure based on a symbolic semantics and
constraint solving. Unlike most other work, our procedure decides equivalences exactly, i.e.
without approximations. Moreover, it does not restrict the class of processes (except for
replication), nor the use of else branches, and is correct for any cryptographic primitives that
can be modelled by a subterm convergent destructor rewrite system (see section 2). The
design of the procedure did greatly benefit from our complexity study, and was developed in
order to obtain tight complexity upper bounds.
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Pure pi calculus
Applied pi calculus

(destr.) subterm convergent

∼ logspace conp complete

≈t Π2 complete conexp complete

≈` pspace complete conexp complete

Figure 1: Summary of complexity results.

Tool implementation. We implemented our procedure for trace equivalence in a new tool,
Deepsec. While still a prototype, Deepsec was carefully engineered. The tool output is
available in pretty printed html format and allows to step through an attack, if any is found.
Deepsec can also distribute the computation, thus exploiting multicore architectures or
clusters of computers to their fullest. Finally, we integrated several classical optimisations for
trace-equivalence analysis, e.g. partial order reductions (POR) [BDH15]. This has appeared
to reduce the search space dramatically, making the tool scale well in practice despite the
high theoretical complexity (conexp).

Through extensive benchmarks, we compare Deepsec to other tools limited to a bounded
number of protocol sessions: Apte, Spec, Akiss and SAT-Equiv. Our tool is significantly
more efficient—by several orders of magnitude—than Apte, Spec and Akiss, even though
Deepsec covers a strictly larger class of protocols than Apte and Spec. Besides, its perfor-
mances are comparable to SAT-Equiv, which still outperforms Deepsec when the number
of parallel processes significantly increase. This gap in performances seems unavoidable as
Deepsec operates on a much larger class of protocols (more primitives, else branches, no
limitation to simple processes, termination guaranteed).

Part of the benchmarks consists of classical authentication protocols and focuses on
demonstrating scalability of the tool when augmenting the number of parallel protocol ses-
sions. The other examples include more complex protocols, such as Abadi and Fournet’s
anonymous authentication protocol [AF04], the protocols implemented in the European pass-
port [For04], the AKA protocol used in 3G mobile telephony, as well as the Prêt-à-Voter [RS06]
and the Helios [Adi08] e-voting protocols.
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2 Model

2.1 Messages and cryptographic primitives

We model the messages that are exchanged as first-order terms over a given signature and we
equip them with a term rewrite system.

Term signature. We assume an infinite set of names, denoted N = {a, b, . . . , } which are
used to model atomic data. We partition N into two disjoint infinite sets Npub and Nprv.
Npub is used to model public names that are known by the adversary, or generated by the
adversary. Nprv is the set of private names, used to model secret keys and nonces. We also
define an infinite set of variables, denoted X as well as a signature F = {f/n, g/m, . . .}, that
is a finite set of function symbols with their arity. More precisely, we consider F = Fc ] Fd
where Fc is the set of constructors and Fd is the set of destructors. Intuitively, in contrast
to constructors, the destructors represent cryptographic primitives that can fail during their
execution, which may for instance happen when incorrect arguments were given to them (e.g.
decryption may fail when one tries to decrypt a cipher text using the wrong key).

Example 1. A signature for modelling standard cryptographic primitives (symmetric and
asymmetric encryption, concatenation and hash) is F = Fc∪Fd where Fc and Fd are defined
as follows:

Fc = {senc/2, aenc/2, pk/1, 〈 〉/2, h/1}
Fd = {sdec/2, adec/2, proj1/1, proj2/1}

The function aenc (resp. senc) represents asymmetric (resp. symmetric) encryption with
corresponding decryption function adec (resp. sdec) and public key pk. Concatenation is
represented by 〈 〉 with associated projectors proj1 and proj2. h represents the hash function.

Terms and substitutions Terms are defined as names, variables, and function symbols
applied to other terms. For any F ⊆ F , N ⊆ N and V ⊆ X , the set of terms built from N and
V by applying function symbols in F is denoted by T (F,N ∪ V). We denote by vars(t) and
names(t) the sets of variables and names respectively occurring in a term t. We denote by
st(t) the set of subterms of u, and by sst(t) its strict subterms, i.e. sst(t) = st(t) \ {t}. We
write root(t) for the function symbol, name, variable or constant that is at the root position
of the term t. A constructor term is a term belonging to T (Fc,N ∪ X ).Given a term t we
denote by |t| its size, i.e., the number of nodes of the syntax tree of the term. When stating
some of our complexity results we suppose a succinct representation of terms as DAGs with
maximal sharing (which may be exponentially more concise). We define |t|dag = |st(t)| to
be the DAG size of t, which equals the number of different subterms occurring in t (as the
DAG with maximal sharing has exactly one node for each subterm). These notions of size
are naturally lifted to sets and sequences of terms (where the sharing of DAGs is common to
all elements of the set or sequence).

We distinguish two types of terms: protocol terms and recipes. For this we refine the set of
variables X to be composed of three different types of variables and define X = X 1]X 2]AX
where X 1 = {x, y, z, . . .} is the set of first-order variables, X 2 = {X,Y, . . .} is the set of
second-order variables and AX = {ax1, . . . , axn, . . .} is the set of axioms. We also write AX i
for the set {ax1, . . . , axi} and by convention defineAX 0 = ∅. We define vars1(t) = vars(t)∩X 1,
vars2(t) = vars(t)∩X 2 and axioms(t) = vars(t)∩AX to denote the set of first-order variables,
the set of second-order variables and the set of axioms occurring in t, respectively. We further
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refine the set of second-order variables as X 2 =
⋃
i≥0X 2

i , such that for any i ≥ 0 we have

that (
⋃
j<iX 2

j ) ⊂ X 2
i . We moreover define X 2

:i to be (X 2
i \X 2

i−1) and write X:i when we want

to emphasise that X ∈ X 2
:i . Intuitively, a second order variable X:i may only be instantiated

with terms whose axioms are in AX i and second-order variables in X 2
i .

Protocol terms are the set of terms in T (F ,N ∪ X 1). A ground protocol term t is a
message if u↓ is a constructor term for all u ∈ st(t). We define the predicate Msg(·) on terms
such that Msg(t) is true if and only if t is a message.

Recipes are defined as the set of terms in T (F ,Npub ∪ X 2 ∪ AX ). They represent the
actions of the attacker and in particular how he deduces messages. Axioms can be seen as
pointers to the hypotheses (either initially known messages or protocol outputs). A ground
recipe ξ is a recipe that does not contain second-order variables, i.e., vars2(ξ) = ∅. Note that
a ground recipe may however contain axioms. We also define by T 2

i = T (F ,Npub∪X 2
i ∪AX i),

i.e., the set of recipes that may only contain axioms and second-order variables up to i.
Substitutions are mappings from variables to terms. We usually denote a substitution

σ as {x1 7→ u1; . . . ;xn 7→ un}. The domain of σ, denoted dom(σ), is the set {x1, . . . , xn}
and the image of σ, denoted img(σ), is the set {u1, . . . , un}. We denote the substitution
whose domain is empty by ∅. We moreover write |σ| for |dom(σ)|, we denote by σ|X the
substitution whose domain is restricted to variables in X and write σ′ � σ when σ′ extends
σ, i.e., σ′|dom(σ) = σ. As usual we homomorphically extend substitutions to apply to (sets
of, sequences of) terms and use postfix notation for application, i.e., we write tσ for σ(t).
We suppose that substitutions will preserve the types of the terms: they will map first-order
variables to protocol terms, axioms to protocol terms and second-order variables to recipes.

Remark 1. We suppose that substitutions preserve types: variables of X 1 ∪AX are mapped
to protocol terms and variables of X 2

i to recipes of T 2
i .

Rewriting and unification Behaviour of primitives are modelled through a finite conver-
gent rewriting system R defined on F such that for all (`, r) ∈ R, usually denoted `→ r ∈ R,
` ∈ T (F ,X ) and r ∈ T (Fc,X ). A term u is reduced into v by R, denoted u →R v, if there
exist a substitution σ, a position p of t and (`, r) ∈ R such that u|p = `σ and u[rσ]p = v.
We denote by →∗R the transitive closure of →R. Since R is convergent, we denote by u↓R
the (unique) normal form of u, i.e. u→∗R u↓R and no reduction step is possible on u↓R. To
lighten notation, whenever R is clear from the context, we omit R and simply write u → v
and u↓.

Definition 1 (rewriting system). A rewriting system R is

• subterm if for all ` → r ∈ R, r is either a strict subterm of ` or a ground term in
normal form;

• destructor if for all `→ r ∈ R, ` is a term g(u1, . . . , un) where the ui’s are constructor
terms and g ∈ Fd.

Example 2. The signature in example 1 can typically be equipped with the rewriting system:

sdec(senc(x, y), y)→ x proj1(〈x, y〉)→ x adec(aenc(x, pk(y)), y)→ x proj2(〈x, y〉)→ y

Two terms t and u are (syntactically) unifiable if there exists a substitution σ such that
tσ = uσ. A substitution σ is said to be a most general unifier of t and u if for any unifier θ of t
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and u, there exists τ such that θ = στ . It is well known that for any two unifiable terms s and
t, there is a unique most general unifier, up to variable renaming. We denote this most general
unifier by mgu(s, t). We assume w.l.o.g. that dom(mgu(s, t))∩ vars(img(mgu(s, t))) = ∅ and
dom(mgu(s, t))∪ vars(img(mgu(s, t))) ⊆ vars(s, t). We also define the set of unifiers modulo
a rewrite system R.

Definition 2. Let {si, ti}i∈I be a set of pairs of terms and X = vars({si, ti}i∈I). A set of

substitutions mguR({si
?
= ti}i∈I) is called a complete set of unifiers modulo R of the system

of equations {si =? ti}i∈I if each of the following holds:

1. dom(σ) ⊆ vars(X) for each σ ∈ mguR({si =? ti}i∈I);

2. siσ↓ = tiσ↓, Msg(sσ) and Msg(tσ) for each i ∈ I and each σ ∈ mguR({si =? ti}i∈I);

3. for any substitution θ such that siθ =R tiθ for every i ∈ I, there exists a substitution
σ ∈ mguR({si =? ti}i∈I ,) and a substitution τ with θ[X]↓ = στ |X↓.

For singleton systems, we also write mguR(s, t) instead of mguR({s =? t}). Such complete
sets of unifiers can be computed for (destructor) subterm convergent rewrite systems using
narrowing. Also note that for destructor rewrite systems we require that the unifiers only
yield messages and not arbitrary terms.

Example 3. Using the rewrite system of example 2, if a ∈ N and t = sdec(proj1(x), y) we
have mguR(a, t) = {{x 7→ 〈senc(a, y), z〉}}. An other, less usual, example consist of unifying
t = proj1(x) with itself modulo R since we do not get the identity but mguR(t, t) = {{x 7→
〈y, z〉}}.

2.2 Processes

Plain processes, the core of the modelling of distributed protocols, are defined by the following
grammar by following in the steps of [AF01]:

P,Q := 0 null
P | Q parallel
if u = v thenP elseQ conditional
u〈v〉.P output
u(x).P input

where u, v are terms and x is a first-order variable. Nested parallel processes may be written
without parenthesis assuming a right-associative convention:

n∏
i=1

Pi , P1 | · · · | Pn , P1 | (P2 | (· · · | Pn) · · · )

Inputs bind variables and define their scope: a plain process is then closed if it does not have
free variable, i.e. all variables are bound. We say that a plain process P is positive when each
of the conditionals of P is of the form if u = v then Q else 0 (written if u = v then Q).
We denote by |P | the size of the process, that is the size of the process tree plus the size of
the terms (in explicit representation) and by |P |DAG its size when terms are represented by
DAGs (with global sharing).
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Remark 2. The calculus of [AF01] has a replication operator requiring a mechanism (name
restriction) to handle unbounded private-name generation. Here, private names are simply
those of Nprv.

Example 4. Consider the protocol for private authentication [AF04], described informally
using Alice-and-Bob notation:

X → B : aenc(〈NX , pk(skX)〉, pk(skB))

B → X : aenc(〈NX , 〈NB, pk(skB)〉〉, pk(skA)) if X=A

aenc(NB, pk(skB)) otherwise

B accepts authentication requests from A but not from other parties. However, the protocol
should hide to any outsider that B is willing to engage with A—which explains the decoy
message sent when B is contacted by a different party. The role of B can be specified in the
applied pi calculus, writing t = adec(x, skB), t1 = proj1(t) and t2 = proj2(t):

B = c(x).
if t2 = pk(skA) then

c〈aenc(〈t1, 〈NB, pk(skB)〉〉, pk(skA))〉
else c〈aenc(NB, pk(skB))〉

where skA, skB, NA, NB ∈ Nprv, c ∈ Npub. Anonymity can be stated as equivalence of B
and B′ = B{skA 7→ skA′}, assuming that the attacker has access to all public keys involved.
Indeed, this means that an attacker sees no difference between B willing to engage with A or
A′.

Next we define extended processes which intuitively represent the set of plain processes
simultaneously executed in parallel, together with the knowledge aggregated by the attacker
along the run through public outputs:

Definition 3 (extended process). An extended process is a pair A = (P,Φ) where:

• Φ = {ax1 7→ u1, . . . , axn 7→ un} is a substitution of domain dom(Φ) ⊆ AX and range
img(Φ) ⊆ T (Fc,N );

• P is a multiset of closed plain processes.

Moreover, we require that all variables are bound only once in P, i.e., a variable x can appear
only in one input of P.

The substitution Φ is called the frame. The frame contains the attacker’s initial knowledge
by recording the protocol outputs. It will be used to evaluate recipes, e.g. ξΦ represents the
message obtained by application of Φ on the recipe ξ. Given an extended process A, we
denote the frame of A by Φ(A). Finally, we use a double-bracket notation {{·}} for multisets.

2.3 Semantics

We define the operational semantics of extended processes through a labelled transition rela-

tion A
a−→
R
c B where A,B are extended processes and a is an action and R a rewrite system.

For the sake of readability we often omit to specify R, as it is generally clear from the context.
The alphabet of actions A consists of
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• the set of input actions ξ(ζ) where ξ is a recipe for the channel, and ζ a recipe for the
term to be input;

• the set of output actions ξ〈axn〉 where ξ is a recipe for the channel, and axn is the axiom
added to the frame, pointing to the output term.

In a transition A
a−→c B, a is either the empty word ε or a letter from A. The transition

relation is defined by the rules given in fig. 2. Note that we check that all terms that have to
be evaluated during the execution are messages.

(P ∪ {{0}},Φ)
ε−→c (P,Φ) (Null)

(P ∪ {{if u = v thenP elseQ}},Φ)
ε−→c (P ∪ {{P}},Φ) (Then)

if Msg(u), Msg(v) and u↓ = v↓
(P ∪ {{if u = v thenP elseQ}},Φ)

ε−→c (P ∪ {{Q}},Φ) (Else)
if either ¬Msg(u), ¬Msg(v) or u↓ 6= v↓

(P ∪ {{u〈t〉.P, v(x).Q}},Φ)
ε−→c (P ∪ {{P,Q{x 7→ t}}},Φ) (Comm)

if Msg(u), Msg(v), Msg(t) and u↓ = v↓
(P ∪ {{P | Q}},Φ)

ε−→c (P ∪ {{P,Q}},Φ) (Par)

(P ∪ {{u(x).P}},Φ)
ξ(ζ)−−→c (P ∪ {{P{x 7→ ζΦ↓}}},Φ) (In)

if ξ, ζ ∈ T (F ,Npub ∪ dom(Φ)), Msg(u), Msg(ξΦ), Msg(ζΦ) and ξΦ↓ = u↓

(P ∪ {{u〈t〉.P}},Φ)
ξ〈axn〉−−−−→c (P ∪ {{P}},Φ ∪ {axn 7→ t↓}) (Out)

if ξ ∈ T (F ,Npub ∪ dom(Φ)), Msg(u), Msg(ξΦ), Msg(t), ξΦ↓ = u↓, and n = |Φ|+ 1

Figure 2: Semantics of the calculus (w.r.t. an implicit rewrite system R)

Given a word w ∈ A∗, we denote the relation A
w
=⇒c B when A

a1−→c . . .
an−→c B with

w = a1 . . . an. The process calculus is very similar to the replication-free fragment of the
original applied π-calculus [AF01] and has the same expressiveness. Finally, taking F = ∅
and R = ∅, i.e., the only terms are names and variables, we retrieve a calculus that is similar
to the finite, pure π-calculus [MPW92].

Example 5. We introduce a toy example which will serve as a pedagogical running example.
It was designed for its simplicity and capacity to illustrate the different notions defined in
this paper. If b ∈ {0, 1} ⊆ Npub and c ∈ Npub:

P b , c(x). if proj2(x) = b then c〈0〉 else c〈proj2(x)〉
Q , c(x). c〈proj2(x)〉

Process Q forwards the second component of a term received through a public channel c. P 0

and P 1 have a similar behaviour as Q except that on input values 〈t, 1〉, P 1 outputs 0 rather
than 1. We illustrate the semantics on P 1, e.g. by forwarding a hash h(n), n ∈ Npub, sent by
the attacker:

({{P 1}}, ∅)

c(〈0,h(n)〉)−−−−−−→c

({{
if proj2(〈0, h(n)〉) = 1 then c〈0〉
else c〈proj2(〈0, h(n)〉)〉

}}
, ∅

)
c〈ax1〉
===⇒c (∅, {ax1 7→ h(n)})

11



2.4 Equivalences

Equivalences between two processes intuitively express the fact that no attacker can distin-
guish these two processes. They can be used to formalise many interesting security properties,
such as anonymity, unlinkability, strong secrecy, etc. We focus in this section on three equiv-
alences: static equivalence, labelled bisimilarity and trace equivalence.

2.4.1 Static equivalence

Static equivalence expresses that two sequences of terms, represented by frames, are indis-
tinguishable to an attacker. This notion has been extensively studied (see e.g. [AC06]).
Intuitively, two frames are in static equivalence if an attacker cannot distinguish them, even
when applying arbitrary primitives to the messages in the frames.

Definition 4 (static equivalence). Let Φ and Φ′ two closed frames and R a rewrite system.
We say that Φ and Φ′ are statically equivalent, written Φ ∼R Φ′, when dom(Φ) = dom(Φ′)
and when for all ground recipes ξ, ζ, if axioms(ξ, ζ) ⊆ dom(Φ) then:

• Msg(ξΦ) if and only if Msg(ξΦ′)

• if Msg(ξΦ) and Msg(ζΦ) then ξΦ↓R = ζΦ↓R if and only if ξΦ′↓R = ζΦ′↓R.

We also lift static equivalence to extended processes: A ∼R B iff Φ(A) ∼R Φ(B).

The first item of definition 4 states that the failure of a destructor on one frame also yield
a failure on the other frame. The second item is more classical and is used to verify that an
equality holding on one frame also hold on the other frame.

Example 6. One informal property of encryption schemes is that an encrypted message should
look unintelligible, which is expressed by the static equivalence of Φ0 = {ax1 7→ senc(m, k)}
and Φ1 = {ax1 7→ m′} for all m ∈ Npub and k,m′ ∈ Nprv. This is not the case anymore once
the key is revealed: Φ0 ∪ {ax2 7→ k} 6∼ Φ1 ∪ {ax2 7→ k} (try recipes ξ = sdec(ax1, ax2) and
ζ = m).

2.4.2 Trace equivalence

Trace equivalence is a generalisation of static equivalence to the case where an attacker ac-
tively interacts with the protocol. Intuitively, two extended processes A and B are in trace
equivalence if any sequence of actions of A can be matched by the same sequence of actions
in B such that the resulting frames are statically equivalent.

Definition 5 (trace equivalence). Let A and B be two extended processes and R a rewrite

system. We say that A vRt B if for all A
tr
=⇒c (P,Φ), there exists (P ′,Φ′) such that B

tr
=⇒c

(P ′,Φ′) and Φ ∼R Φ′. We say that A and B are trace equivalent, denoted A ≈Rt B, when
A vRt B and B vRt A.

One can easily prove that trace inclusion vRt is a (partial) ordering on extended processes
and that ≈Rt is an equivalence relation.

12



2.4.3 Labelled bisimilarity

The last equivalence states that an external observer cannot make a difference between two
protocols, taking into account not only the frames but also the dynamic behaviour of the
processes.

Definition 6 (labelled bisimilarity). Let R a rewrite system. Labelled bisimilarity (≈R` ) is
the largest symmetric relation such that for all extended processes A and B, A ≈R` B entails:

1. A ∼R B; and

2. if A
α−→c A

′ then there exists B′ such that B
α
=⇒c B

′ and A′ ≈R` B′.

One can easily prove that this defines an equivalence relation on extended processes.
In [AF01] it was shown that labelled bisimilarity coincides with observational equivalence, a
barbed congruence relation.

Example 7. Consider the processes introduced in example 5. The informal statement that
P 0 and Q have the same behaviour is expressed by the equivalence (P 0, ∅) ≈` (Q, ∅). On

the contrary (P 1, ∅) 6≈t (Q, ∅) since the transition (P 1, ∅) c(1).c〈ax1〉
======⇒c {ax1 7→ 0} cannot be

matched in (Q, ∅).

2.5 Complexity and decision problems

In this section we shortly remind some background about complexity, mainly introducing our
notations and define the decision problems related to the previously introduced equivalences.

2.5.1 Basic complexity classes

Given f : N→ N, we define TIME(f(n)) (resp. SPACE(f(n))) the class of problems decidable by
a deterministic Turing machine running in time (resp. in space) at most f(n). It is common
to define the following classes:

logspace =
⋃
p∈N

SPACE(log(np)) ptime =
⋃
p∈N

TIME(np)

pspace =
⋃
p∈N

SPACE(np) exptime =
⋃
p∈N

TIME(2n
p
)

One can define their non-deterministic counterparts nlogspace, nptime, npspace and nex-
ptime. Given a (non-deterministic) class C, we call co-C the class of problems whose negation
is in C. From now on, we often omit the suffix time in the name of time-complexity classes
for the sake of succinctness, and write l instead of logspace. Then it is known that:

l ⊆ nl=conl ⊆ p ⊆ np,conp ⊆ pspace=npspace ⊆ exp ⊆ nexp,conexp

By abuse of notation, we identify a class C of decisions problems and the class FC of func-
tions (from string to string, in terms of Turing machines) computable within the resources of
C. We use many-to-one polynomial-time reductions to define complete problems for complex-
ity classes above ptime, and mention the more general notion of oracle reduction, deciding
a problem with a constant-time black box for an other problem. The class of problems de-
cidable in C with an oracle for a problem Q is noted CQ. When Q is complete for a class D
w.r.t. a notion of reduction executable in C, we may write CD instead.

13



2.5.2 Polynomial hierarchy

In terms of alternating Turing machines, the difference between np and pspace lies in their
capacity to express (quantifier) alternation. However, the gap between “purely existential”
(np) and “unrestricted alternation” (pspace) seems a little harsh. The polynomial hierarchy
defines the intermediate classes.

Definition 7 (polynomial hierarchy). The polynomial hierarchy ph consists of the classes Σn

defined by Σ0 =p and Σi = npΣi−1 if i > 0. In particular, Σ1 = np. We also write Πi for
coΣi.

2.5.3 Decision problems for equivalences

For each of the previously mentioned equivalences, whenever the rewrite system is clear from
the context we omit R and simply write ∼, ≈t and ≈`. We can now define the decision
problems associated to each of these equivalences.

Definition 8 (parameterised equivalence problem). Let F be a signature, R a rewriting
system defined on F and � ∈ {∼,≈t,≈`}. We define the decision problem Equiv�R,F :

input: two extended processes A,B defined on F .

question: A �R B.

In [AC06], it was first shown that for an arbitrary convergent rewriting system R, and
signature F the problem Equiv∼R,F is undecidable, but for any subterm convergent rewriting
system R, Equiv∼R,F can be solved in polynomial time. We note that in Equiv�R,F , R and F are
not part of the input and that all previously proposed procedures in [AC06, CDK12, CBC10]
are actually exponential in R or F . Moreover, this definition does not allow to give a lower
bound for the whole class of subterm convergent rewriting system (the lower bounds may be
different for particular rewriting systems). We therefore define an alternate problem which
takes R and F as additional inputs. Given the undecidability of the general case we need to
restrict the class of rewrite systems, or processes. We do that by the means of a predicate ψ
which must hold on the input.

Definition 9 (general equivalence problem). Let �∈ {∼,≈t,≈`}. We define the decision
problem Equiv�ψ :

input: a signature F , a rewriting system R defined on F , two extended processes A,B
defined on F such that ψ(F ,R, A,B) holds.

question: Equiv�R,F (A,B).

To lighten notation we will often just write

“Equiv� for subterm convergent rewrite systems and positive processes”

rather than

“Equiv�ψ where ψ(F ,R, A,B) holds when R is a subterm convergent rewrite sys-
tems and A,B are positive processes”.

14



Remark 3. It is important to be precise on whether terms in the input are provided as
trees or DAGs (as the DAG representation may be exponentially more concise). In this
paper, when proving complexity lower bounds we suppose that terms are represented as
trees; when showing upper bounds we suppose that terms are encoded as DAGs. As terms
in tree representation can be converted into DAGs in polynomial time (in the tree size), the
presented results also hold if the other encoding would have been chosen.
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Part I

Complexity lower bounds

3 Tools for proving complexity lower bounds

In this section we introduce a few tools and gadgets that will be helpful for encoding problems.

3.1 Internal non-deterministic choice

A classical feature of CCS which is not directly part of the applied π-calculus is non-
deterministic choice. P + Q can be executed either as P or as Q, which is formalized by
the following rules:

(P ∪ {{P +Q}},Φ)
ε−→c (P ∪ {{P}},Φ) (Choice-L)

(P ∪ {{P +Q}},Φ)
ε−→c (P ∪ {{Q}},Φ) (Choice-R)

The classical encoding for + within the initial calculus is formally defined by a process
transformation J·K, where:

JP +QK , s〈s〉 | s(x).JP K | s(y).JQK where s ∈ Nprv and x, y ∈ X 1 are fresh (1)

and all other cases of the syntax are handled as homomorphic extensions of J·K. As for the
parallel operator we will sometimes use the big operator

∑
assuming right-associativity. The

correctness of this translation with respect to ≈t and ≈` will be stated later on in section 3.3.

Remark 4. By “fresh name” (or variable), we mean that the term does not appear in other
parameters of the problem, should it be in processes, their translations, or frames.

We also introduce the Choose(x) construct which non-deterministically assigns either 0
or 1 to x. Choose(x).P silently reduces to either P{x 7→ 0} or P{x 7→ 1} and Choose(~x).P
is defined as Choose(x1).Choose(x2) . . . Choose(xn).P where ~x = x1, · · · , xn. Formally, we
extend the operational semantics with the rule

(P ∪ {{Choose(x).P}},Φ)
ε−→c (P ∪ {{P{x 7→ 0}}},Φ) (Choose-0)

(P ∪ {{Choose(x).P}},Φ)
ε−→c (P ∪ {{P{x 7→ 1}}},Φ) (Choose-1)

and define

JChoose(y).P K , (d〈0〉+ d〈1〉) | d(y).JP K with d ∈ Nprv is fresh

3.2 Boolean circuits and formulae

About circuits Complete problems in complexity theory often involve boolean formulae
(e.g., sat or qbf). The ability to evaluate boolean formulae, or boolean circuits in general,
within the applied π-calculus is therefore curcial. We can implement such a feature by the
means of private channels and internal communication: each edge of a boolean circuit Γ
indeed mimics a channel transmitting a boolean over a network (fig. 3).
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∨  | | P (x, y)

c1

c2

c3

c4

c1〈a〉

c2〈b〉

c1(x)

c2(y)

c3〈x ∨ y
〉

c4〈x ∨ y〉

c3(x)

c4(y)

Figure 3: Simulation of an OR-gate within the applied π-calculus

Formally, the essence of circuits lies in so-called logical gates which are boolean functions
with at most two inputs. We assume without loss of generality that the gate has at most two
(identical) outputs, to be given as input to other gates. Logical gates usually range over the
constants 0 and 1 and the predicates ∧, ∨ and ¬ with the usual truth tables but we may use
other common operators such as =. From that a boolean circuit is an acyclic graph of logical
gates: each input (resp. output) of a gate is either isolated or connected to a unique output
(resp. input) of an other gate, which defines the edges of this graph.

Such a circuit Γ with m isolated inputs and p isolated outputs thus models a boolean
function Γ : Bm → Bn (where B = {0, 1}). We write (c1, c2, g, c3, c4) ∈ Γ to state that
g : B2 → B is a gate of Γ whose inputs are passed through edges c1 and c2 and whose output
is sent to edges c3 and c4. This notation is naturally lifted to other in-outdegrees.

Embedding into the calculus The syntax of plain processes is now extended with the
construction x1, · · · , xn ← Γ(b1, · · · , bm).P where Γ : Bm → Bn is a circuit, x1, . . . , xn vari-
ables and b1, · · · , bm terms. We fix two distinct terms 0, 1 ∈ T (F ,Npub) to model B within
the calculus, and the labelled operational semantics is extended with the rule:

(P ∪ {{~x← Γ(~b).P}},Φ)
ε−→c (P ∪ {{P{~x 7→ Γ(~b↓)}}},Φ) (Valuate)

if Msg(~b) and ~b↓ ⊆ B

Now we have to extend the definition of J·K (previous subsection) to handle the new
operator. For simplicity we only consider the case where gates have two inputs and two
outputs: handling lower arities is straightforward. If (c1, c2, g, c3, c4) ∈ Γ, we first define:

Jc1, c2, g, c3, c4K , c1(x).c2(y).
∏
b,b′∈B

if x = b then if y = b′ then (c3〈g(b, b′)〉 | c4〈g(b, b′)〉)

where c1, c2, c3, c4 ∈ Nprv (assuming that different circuits in a process do not share edges).
To sum it up, we simply see circuit edges as private channels and simulate the logical flow of
the gate. It is then easily extended:

J~x← Γ(~b).P K ,
m∏
k=1

cik〈bk〉 |
∏

(c1,c2,g,c3,c4)∈Γ

Jc1, c2, g, c3, c4K | co1(x1) . . . con(xn).JP K (2)

where (cik)mk=1 (resp. (cok)nk=1) are the isolated input (resp. output) edges of Γ.

Remark 5. When b and b′ are fixed booleans, g(b, b′) denotes the boolean obtained from the
truth table of g: we emphasise that g is not a function symbol of the signature F .

Remark 6. We assume that every input of a circuit goes through at least one gate and has
at least one output. This is to avoid irrelevant side cases in proofs.
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3.3 Correctness of the translation

Now we dispose of an extended syntax and semantics as well as a mapping J·K removing the
new constructors from a process. The correctness of this translation is proven in appendix A.2:

Lemma 1. Let ≈+
t and ≈+

` be the notions of trace equivalence and labelled bisimilarity over
the extended calculus (the flag + being omitted outside of this lemma). For all extended
processes A = (P,Φ), the translation JAK = (JPK,Φ) = ({{JP K | P ∈ P}},Φ) can be computed
in polynomial time, A ≈+

t JAK and A ≈+
` JAK.

Remark 7. As the finite, pure, and positive fragments of the applied π-calculus are closed
under J·K, sums and circuits can be safely used within any intersection of such fragments.

4 Complexity lower bounds for the pure π-calculus

In this section we give lower bounds for the complexity of Equiv≈t (resp. Equiv≈`) for the
positive pure π-calculus, i.e., taking F = R = ∅. We show that deciding trace equivalence,
respectively labelled bisimilarity, is Π2-hard, resp. pspace-hard, in this setting. This is done
by reduction from qsat2 (resp. qbf) to non-equivalence.

4.1 Trace equivalence

To show that trace equivalence is Π2-hard we proceed by a reduction from qsat2 to non-
equivalence. As qsati is known to be Σi-complete [Pap03] this allows us to conclude that
trace equivalence is Π2-hard.

Definition 10 (qsati). For any i ∈ N, the problem qsati is defined as follows:

input: A boolean formula ϕ and a partition X1, · · · , Xi of its variables.
question: Does the statement ∃X1,∀X2, · · · , QXi, ϕ hold, where Q = ∃ if i is odd and
Q = ∀ otherwise?

Let ϕ be a boolean formula whose variables are partitioned into {~x}∪ {~y}. Our goal is to
construct two processes A and B such that:

A 6≈t B if and only if ∃~x.∀~y.ϕ(~x, ~y) = 1 (3)

P (t)

c(~x)

Choose(~y)

v ← ϕ(~x, ~y)

c〈t〉

A

+

P (v) P (1)

B

+

P (0) P (1)

Figure 4: Schematic definition of A and B
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Consider three distinct names c, 0, 1 ∈ Npub (the last two modelling booleans for the circuit
construction of section 3.2). Processes A and B are depicted in fig. 4. Intuitively, the process
P (t) (where t is a term which may depend on the variables bound by P ) gets a valuation of
~x from the attacker, internally chooses a valuation of ~y, computes the value of ϕ(~x, ~y) using
rule Valuate, and outputs t. From that it is quite easy to see that A and B have the same
set of traces iff for all valuation of ~x, there exists a valuation of ~y such that ϕ(~x, ~y) = 0. More
formally, we define P (t), A and B as follows.

P (t) , c(~x). Choose(~y). v ← ϕ(~x, ~y). c〈t〉
A , P (v) + P (1)

B , P (0) + P (1)

The correctness of the reduction, that is to say eq. (3), is formally proven in the long
version, appendix A.3.

Theorem 1. Equiv≈t∅,∅ is Π2-hard on positive processes.

4.2 Labelled bisimilarity

To prove that labelled bisimilarity is pspace-hard for the positive pure pi calculus we proceed
by reduction from satisfiability of Quantified Boolean Formulae (qbf), which is pspace-
complete [Pap03].

Lemma 2 (qbf). The following problem is pspace-complete:

input: A boolean formula ϕ with variables x1, . . . , xn, y1, . . . , yn.
question: Does ∃x1,∀y1, . . . ,∃xn,∀yn, ϕ hold?

The case of labelled bisimilarity is more involved as qbf allows arbitrary quantifier al-
ternation. Let ϕ be a boolean formula whose variables are partitioned into {x1, . . . , xn} ∪
{y1, . . . , yn} for some n ∈ N. We construct (in polynomial time in the size of ϕ and n) two
processes A and B such that:

A 6≈` B if and only if ∃x1∀y1 . . . ∃xn∀yn. ϕ(x1, . . . , xn, y1, . . . , yn) = 1 (4)

Both qbf and labelled bisimilarity may be seen as bisimulation games: an attacker plays
the ∃-quantifiers (selects a transition in a process) whereas a defender responds with the
∀-quantifiers (tries to find a similarly-labelled sequence of transitions in the other process).
The role of A and B is to implement this intuitive connection: the attacker moves will be
simulated by public inputs c(xi) and the defender responses by instructions Choose(zi).c(yi).
The structure of A and B is then designed to constrain the moves of the two players so that
the winning condition of the attacker is exactly ∃x1∀y1 . . . ∃xn∀yn. ϕ(~x, ~y) = 1.

A and B are defined inductively by processes Ai, Bi and Di, depicted in fig. 5, structured
in a way that, in a bisimulation game:

1. the attacker chooses the instance of xi;

2. the defender chooses the instance of zi and can force the attacker to instanciate yi with
the same value (the attacker not doing so allows for a trivial victory of the defender).
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Ai, i6n

c(xi)

xi ∈ B

Di

Bi, i6n

c(xi)

xi ∈ B

+

Di c(yi)

yi ∈ B

Goto 〈Bi+1〉

Di, i6n

Choose(zi)

c(yi)

ri ← (yi = zi)

|ri = 1 ri = 0

Goto 〈Ai+1〉 Goto 〈Bi+1〉

An+1

v ← ϕ(~x, ~y)

c〈v〉

Bn+1

c〈0〉

Figure 5: Schematic definition of Ai and Bi

We fix a family of private channels (cP )P ⊆ Nprv indexed by processes P which will be used

to simulate instructions Goto 〈P 〉. We use a shortcut d〈−→t p〉 for an indexed sequence of terms
(ti)i to denote the sequence of outputs:

d〈−→t p〉 , d〈t1〉 . . . d〈tp〉

and a similar notation for sequences of inputs. Then the Goto feature is implemented as
follows, allowing for passing and receiving program states through parallel processes:

Goto 〈Ai〉 , cAi〈
−→x i,−→y i〉 Goto 〈Bi〉 , cBi〈

−→x i,−→y i〉
GetEnv 〈Ai〉 .P , cAi(

−→x i,−→y i) GetEnv 〈Bi〉 .P , cBi(
−→x i,−→y i)

Formally the processes Ai, Bi and Di are defined below. We stress out that A and B
are closed (as required) but that Ai, Bi and Di are not in general. Fixing a public channel
c ∈ Npub, we write:

∀i 6 n, Ai , c(xi). xi ← xi. Di

∀i 6 n, Bi , c(xi). xi ← xi. (Di + (c(yi). yi ← yi. Goto 〈Bi+1〉))
An+1 , v ← ϕ(~x, ~y). c〈v〉
Bn+1 , c〈0〉
Di , Choose(zi). c(yi). ri ← (yi = zi).

((if ri = 1 then Goto 〈Ai+1〉)
| (if ri = 0 then c(yi). yi ← yi. Goto 〈Bi+1〉))

As in the reduction for trace equivalence (section 4.1), the Choose(α) simulates non-
deterministic choice among B; the construction α← α, which may seem useless, encodes the
test α ∈ B. Finally, we define A and B by putting the auxiliary processes in parallel and
connecting the Goto’s to the getEnv’s:

A , A1 | C B , B1 | C C ,
n+1∏
i=2

(GetEnv 〈Ai〉 .Ai) |
n+1∏
i=2

(GetEnv 〈Bi〉 .Bi)
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A and B can be computed in time O(n2 + |ϕ|) in a straightforward way. The last ingredient of
our reduction, namely the proof of eq. (4), follows the steps of the intuition presented above;
the technical proof itself may be found in appendix A.3 in the long version.

Theorem 2. Equiv≈`∅,∅ is pspace-hard on positive processes.

5 Complexity lower bounds for the applied π-calculus

5.1 Static equivalence

The problem of static equivalence for subterm convergent equational theories has first been
studied by [AC06]. It is proven ptime provided that the rewrite system is a constant of the
problem. All procedures for static equivalence in the literature can also be claimed ptime
only when the rewrite system is fixed. We prove here that the problem is actually conp hard
when the rewrite system is part of the input.

Reduction By reduction from sat, let ϕ =
∧p
i=1Ci a boolean formula in CNF with n

variables x1, . . . , xn and p clauses C1, . . . , Cp. Then we define the signature F = Fc ] Fd:

Fc = {0, 1, f/2, g/2} Fd = {eval/n}

which is equipped with the rewrite system R defined by the following p+ 1 rules:

eval(f(x1, y), . . . , f(xn, y))→ 0 eval(g(ti1, y), . . . , g(tin, y))→ 0

where 1 6 i 6 p and

tij =


xj if xj does not appear in Ci
0 if xj appears positively in Ci
1 if xj appears negatively in Ci

Note that this definition assumes that no clause of ϕ contains both a litteral and its negation.
Such clauses are tautological and can be removed by a preprocessing step in logspace,
inducing no loss of generality. Intuitively, if t1, . . . , tn ∈ {0, 1}, eval(g(t1, y), . . . , g(tn, y)) is a
message and reduces to 0 iff the valuation {x1 7→ t1, . . . , xn 7→ tn} falsifies ϕ. Note also that
R is convergent, subterm and destructor. Then the reduction lies in the fact that, for some
k ∈ Nprv, {f(0, k), f(1, k)} ∼ {g(0, k), g(1, k)} iff ϕ is unsatisfiable.

Theorem 3. Equiv∼F ,R for R subterm destructor is conp hard.

5.2 Reducing succinct satisfiability to positive equivalences

In this section, we show a conexp lower bound for trace equivalence and labelled bismilar-
ity by co-reduction from succinct 3sat. A succinct instance of 3sat is a boolean circuit
Γ : {0, 1}m+2 → {0, 1}n+1 (we refer to the definitions of section 3.2). Through binary repre-
sentation of integers, Γ is interpreted as a function JΓK : J0, 2m−1K×J1, 3K→ {0, 1}×J0, 2n−1K.
This way, Γ encodes a CNF formula JΓKϕ with 2n variables ~x = x0, · · · , x2n−1 and 2m clauses:

JΓKϕ(~x) =
2m−1∧
i=0

`1i ∨ `2i ∨ `3i where

{
`ji = xk if JΓK(i, j) = (0, k)

`ji = ¬xk if JΓK(i, j) = (1, k)
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Rephrasing, JΓK(i, j) returns a sign bit and the jth variable of the ith clause of JΓKϕ. This
induces the following question which is the typical complete problem for nexp [Pap03].

Definition 11 (succinct 3sat). The succinct 3sat problem is defined as follows:

input: A boolean circuit Γ with m+ 2 inputs and n+ 1 outputs.
question: Is the 3sat-formula JΓKϕ satisfiable?

Consider an instance of this problem, Γ, with m + 2 inputs and n + 1 outputs and we
design F , R subterm destructor and A and B positive processes such that A 6≈t B iff A 6≈` B
iff JΓKϕ is satisfiable.

Term algebra Terms are built over the following signature:

F , 0, 1, (booleans B)

Node/2, π/2, (binary trees)

h/2, (one-way binary hash)

hN/2, hB/2, TestN/1, TestB/1 (testable binary hashes)

We equip this term algebra with the rewriting system R containing the following rules
modelling subtree extraction (for binary trees) and argument testing (for hashes):

π(Node(x, y), 0)→ x π(Node(x, y), 1)→ y

TestN(hN(Node(x, y), z))→ 1 TestB(hB(0, z))→ 1 TestB(hB(1, z))→ 1

In particular R is subterm and destructor, the destructor symbols being π, TestN and
TestB. We will also use a shortcut for recursive subtree extraction: if ` ∈ T (F ,N ∪X 1)? is a
finite sequence of protocol terms, the notation t|` is inductively defined by:

t|ε , t t|b·` , π(t, b)|`

Core of the reduction Recall that we are studying a formula in CNF JΓKϕ with 2n

variables and 2m clauses. In particular, given a valuation of its 2n variables, we can verify in
non-deterministic polynomial time in n,m that it falsifies JΓKϕ:

1. guess an integer i ∈ J0, 2m − 1K as a sequence of m bits;

2. obtain the three literals of the ith clause of JΓKϕ (requiring three runs of the circuit Γ)
and verify that the valuation falsifies the disjunction of the three literals.

This non-deterministic verification is the essence our reduction. In the actual processes:

• a process CheckTree(x) checks that x is a correct encoding of a valuation, that is, that
x is a complete binary tree of height n whose leaves are booleans;

• a process CheckSat(x) implements the points 1. and 2. above.

All of this is then formulated as equivalence properties within A and B (see the interme-
diary lemmas in the next paragraph for details). Intuitively, we want to express the following
statement by equivalence properties: “for all term x, either x is not an encoding of a valuation
or falsifies a clause of JΓKϕ”. A schematized definition is proposed in fig. 6.
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A

c(x)

+

CheckSat(x) CheckTree(x)

B

c(x)

+

CheckSat(x) CheckTree(x)

c〈h(0, s)〉

c〈h(1, s)〉

CheckSat(x)

Choose(p1, . . . , pm)

b1, `1 ← Γ(~p, 0, 1)

b2, `2 ← Γ(~p, 1, 0)

b3, `3 ← Γ(~p, 1, 1)

v ←

 b1 = x|`1
∨ b2 = x|`2
∨ b3 = x|`3



c〈h(v, s)〉

c〈h(1, s)〉

CheckTree(x)

+

∑n−1
i=0

Choose(p1, . . . , pi)

c〈hN(x|~p, s)〉

c〈h(1, s)〉

Choose(p1, . . . , pn)

c〈hB(x|~p, s)〉

c〈h(1, s)〉

Figure 6: Informal definition of A and B

Formal construction Let us now define the processes depicted in fig. 6 properly; note that
all the proofs about the correctness of this construction are relegated to appendix A.4.2 but
we still state several intermediary lemmas in order to highlight the proof structure. But first
of all, let us give a name to a frame which is at the core of our reduction:

Φ0 = {ax1 7→ h(0, s), ax2 7→ h(1, s)}

Φ0 is reached after executing the central branch of B and everything is about knowing
under which conditions a frame statically equivalent to Φ0 can be reached in A. Let us define
the processes themselves now. We fix s ∈ Nprv and define, if x is a protocol term:

CheckTree(x) ,
n−1∑
i=0

(
Choose(p1, . . . , pi). c〈hN(x|p1···pi , s)〉. c〈h(1, s)〉

)
+ Choose(p1, . . . , pn). c〈hB(x|p1···pn , s)〉. c〈h(1, s)〉

Lemma 3. Let x be a message which is not complete binary tree of height n with boolean
leaves. Then there exists a reduction CheckTree(x)

ε
=⇒c ({{P}}, ∅) such that ({{P}}, ∅) ≈`

(c〈h(0, s)〉. c〈h(1, s)〉, ∅).

Now let us move on to CheckSat(x). This process binds a lot of variables:

– ~p = p1, . . . , pm models the non-deterministic choice of a clause number in J0, 2m − 1K;

– bi, `i, i ∈ J1, 3K, where `i is a sequence of n variables, model the literals of the clause
chosen above (bi is the negation bit and `i the identifier of the variable);

– v stores whether the chosen clause is satisfied by the valuation modelled by x.
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CheckSat(x) , Choose(~p).

b1, `1 ← Γ(~p, 0, 1).

b2, `2 ← Γ(~p, 1, 0).

b3, `3 ← Γ(~p, 1, 1).

v ← (b1 = x|`1 ∨ b2 = x|`2 ∨ b3 = x|`3).

c〈h(v, s)〉.c〈h(1, s)〉

Lemma 4. Let x be a complete binary tree of height n whose leaves are booleans, and valx
be the valuation mapping the variable number i =

∑m
k=1 pk2

k−1 of JΓKϕ to x|p1···pm ∈ B.

Then, if valx does not satisfy JΓKϕ then there exists CheckSat(x)
ε

=⇒c ({{P}}, ∅) such that
({{P}}, ∅) ≈` (c〈h(0, s)〉. c〈h(1, s)〉, ∅).

We can finally wrap up everything by defining A and B and stating the last part of the
correctness theorem. We recall that all the proofs can be found in appendix A.4.2.

A , c(x).(CheckSat(x) + CheckTree(x))

B , c(x).(CheckSat(x) + CheckTree(x) + c〈h(0, s)〉.c〈h(1, s)〉)

Lemma 5. JΓKϕ is satisfiable iff A 6≈t B iff A 6≈` B.

Theorem 4. Equiv≈tF ,R and Equiv≈`F ,R for R subterm destructor are conexp-hard on positive
processes.
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Part II

Complexity upper bounds

6 A symbolic setting

In this section we introduce a symbolic process calculus: rather than requiring the attacker to
perform concrete actions, we record the constraints that need to hold on the inputs provided
by the adversary. This representation provides a finite representation of the infinite set of
actions available to the attacker. In this section we first define constraint systems which record
the constraints on adversary inputs. Next we introduce the notion of most general solutions,
a notion reminiscent to the set of most general unifiers, but for solutions of constraint system.
Then we introduce a symbolic process calculus, allowing to reason on non ground processes
and associated constraint systems. Finally, we define a partition tree: a partition tree may be
seen as the tree of all symbolic executions of two initial symbolic processes, but additionally
partitioning the solutions such that all solutions in a same node yield statically equivalent
processes. The partition tree conceptually captures all information needed to decide trace
equivalence and observational equivalence and will be used in the next section to provide
upper bounds on the complexity. Its construction is delayed to Section part III.

6.1 Constraint systems

Before defining constraint systems themselves we introduce a first-order logic for expressing
the constraints. We introduce two kinds of atomic formulas:

• ξ `? u, and

• u =? v

where u and v are constructor protocol terms and ξ is a recipe such that root(ξ) 6∈ Fc. ξ `? u
is called a deduction fact. A positive literal u =? v is called an equation and a negative literal
¬(u =? v), which we also denote by u 6=? v, is called a disequation.

A formula is a first-order logic formula built over atomic formulas. Given a formula F
we denote by vars1(F ), respectively vars2(F ), the set of free first-order, respectively second-
order, variables of F . A valuation of a formula F is a triple of substitutions (Φ,Σ, σ) where
Φ : AX → T (F ,N ), Σ : X 2 → T (F ,Npub ∪ AX ), σ : X 1 → T (Fc,N ) and that is grounding
for F . The satisfaction relation |= for atomic formulas is defined as

(Φ,Σ, σ) |= ξ `? u iff ξΣΦ↓ = uσ↓ and Msg(ξΣΦ)
(Φ,Σ, σ) |= (u =? v) iff uσ = vσ

and lifted to first-order formulas as usual. When a formula F does not contain any deduction
constraint we sometimes simply write σ |= F as the satisfaction of F does not depend on φ
and Σ. When C is a conjunction of atomic formulas, we sometimes, by abuse of notation,
interpret it as a set of formulas and write (u =?

R v) ∈ C when there exists C′ such that
C = (u =?

R v) ∧ C′.
We can now define constraint systems.

Definition 12. A constraint system is a tuple (Φ,D,E1) where:
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• Φ = {ax1 7→ t1, . . . , axn 7→ tn} is a frame where t1, . . . , tn are constructor protocol terms;

• D is a conjunction of simple deducibility facts X `? t where X ∈ X 2
n , and t is a

constructor protocol term;

• E1 is a conjunction of formulas of the form u =? v or ∀y1. . . . .∀yk.
∨p
j=1 uj 6=? vj where

uj , vj , u, v are constructor protocol terms for all j = 1, . . . , p, and y1, . . . , yk are first
order variables.

Moreover, we assume that the following conditions hold:

• second-order variables occur at most once in D, i.e., for all (X `? u), (Y `? v) ∈ D if
u 6= v then X 6= Y ;

• for all k ∈ {1, . . . , n}, x ∈ vars1(tk), there exists X ∈ X 2
k−1 such that (X `? x) ∈ D;

• vars1(E1) ⊆ vars1(D).

We denote by C∅ the empty constraint system, i.e. Φ is the identity and D = E1 = >.

Intuitively, a constraint system records constraints on a symbolic execution as follows.
Φ corresponds to the frame. An input occurring after i outputs generates a deduction fact
X:i `? x. Conditionals generate equations, respectively disequations, according to whether
the symbolic trace chooses the “then” branch or the “else” branch. The second condition on
constraint systems is generally called the origination property, and intuitively requires that
any variable used in an output must have been input before. Looking ahead, the particular
form of the disequalities can be explained by the fact that we use most general unifiers modulo
R to transform the condition u↓ 6= v↓ into a syntactic constraint using the following lemma.

Lemma 6. Let u, v be two protocol terms.

uσ↓ 6= vσ↓ ∨ ¬Msg(uσ) ∨ ¬Msg(vσ) ⇔ σ � synR(u 6= v)

where

• synR(u 6= v) =
∧
δ∈mguR(u,v) ∀z̃δ.

∨
x∈vars1(u,v) x 6=? xδ, and

• z̃δ = vars1(uδ, vδ) r vars1(u, v).

Given a constraint system C = (Φ,D,E1), we denote by Φ(C), D(C) and E1(C) the corre-
sponding elements of the tuple. The structure of a constraint system C is defined as |Φ(C)|
and {X | (X `? x) ∈ D(C)}.

Definition 13. We say that (Σ, σ) is a solution of a constraint system C = (Φ,D,E1) when

• dom(Σ) = vars2(D) and dom(σ) = vars1(D),

• (Φσ,Σ, σ) |= D ∧ E1.

The substitution σ is called the first-order solution and Σ the second-order solution of C. The
set of solutions of an initial constraint system C is denoted Sol (C). A constraint system C is
satisfiable if Sol (C) 6= ∅.

26



Remark 8. Given a solution (Σ, σ) ∈ Sol (C), due to the origination property, the second-order
solution Σ uniquely defines the first-order solution as σ = σn where

• dom(σ0) = {x | (X `? x) ∈ D, X ∈ X 2
0 } and for any x ∈ dom(σ0), xσ0 = XΣ↓. Note

that when X ∈ X 2
0 , XΣ ∈ T (F ,Npub) since AX 0 = ∅.

• for 1 ≤ k ≤ n we define dom(σk) = {x | (X `? x) ∈ D, X ∈ X 2
k } and for any

x ∈ dom(σk), xσk = (XΣ)(Φσk−1)↓.

We also note that the empty constraint system C∅ is satisfiable as Sol (C∅) = {(∅, ∅)}.
Sometimes we need to restrict the set of solutions. Given a predicate π on second-order so-

lutions we write Solπ(C) for the solutions of C that satisfy π, i.e. Solπ(C) = {(Σ, σ) | (Σ, σ) ∈
Sol (C) and π(Σ)}. The predicate which holds on all second-order solutions is denoted by >
and we have that Sol>(C) = Sol (C).

6.2 Most general solutions

Similarly to the notion of most general unifiers of two terms, we define the most general
solutions of a constraint system that describe the shape of the all solutions of a constraint
system. Unlike syntactic most general unifiers, the most general solutions of a constraint
system may not be unique (even up to variable renaming) and may also require to create new
variables.

Definition 14. Let C be a constraint system and π a predicate on second-order solutions. We
define the most general solutions of C that satisfy π, denoted mgsπ(C), as a set of substitutions
such that:

• for all (Σ, σ) ∈ Solπ(C), there exist Σ0 ∈ mgsπ(C) and a substitution Σ1 such that
Σ = Σ0Σ1|vars2(C).

• for all Σ0 ∈ mgsπ(C), dom(Σ0) ⊆ vars2(C) and for all fresh bijective renaming Σ1 from
vars2(Σ0) ∪ vars2(C) \ dom(Σ0) to Npub, there exists σ such that (Σ0Σ1|vars2(C), σ) ∈
Solπ(C)

We suppose that all substitutions in mgsπ(C) are distinct modulo renaming of variables.

The first condition is very similar to the most general unifier as it specifies that any
solution of a constraint system is an instance of one of the most general solutions. However,
this is not sufficient as for instance the identity substitution would satisfy it. Therefore, the
second condition captures that each most general solution is a non trivial solution: replacing
all second-order variables in the most general solution by distinct, fresh names yields a valid
solution.

6.3 Symbolic processes and symbolic semantics

A symbolic process is a pair (P, C) where P is a multiset of plain processes and C is a
constraint system. We define the symbolic semantics through a labelled transition relation
A

a−→s B where A,B are symbolic processes and a is an action. The alphabet of actions As

consists of

• the set of input actions X(Y ) where X and Y are recipe variables;
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• the set of output actions X〈ax〉 where X is a recipe variable and ax is an axiom.

In a transition A
a−→s B, a is either the empty word ε or a letter from As. The transition

relation is defined by the rules given in fig. 7. As a notational shortcut, we interpret a
substitution σ = {x1 7→ t1, . . . , xn 7→ tn} as the formula x1 =? t1 ∧ . . . ∧ xn =? tn and also
use the notation synR(u 6=? v) (in rule (s-Else)) defined in lemma 6. Finally, note that
mguR(t =? t) may not be the identity substitution, as it enforces that t must be instantiated
to a message (see Example 3).

(P ∪ {{0}}, C) ε−→s (P, C) (s-Null)

(P ∪ {{if u = v thenQ1 elseQ2}}, (Φ,D,E1))
ε−→s (P ∪ {{Q1}}, (Φ,D,E1 ∧ σ)) (s-Then)

if σ ∈ mguR(uµ↓ =? vµ↓)
(P ∪ {{if u = v thenQ1 elseQ2}}, (Φ,D,E1))

ε−→s (P ∪ {{Q2}}, (Φ,D,E1 ∧ ϕ)) (s-Else)
where ϕ = synR(uµ↓ 6=? vµ↓)

(P ∪ {{u〈t〉.Q1, v(x).Q2}}, (Φ,D,E1))
ε−→s (P ∪ {{Q1, Q2{x→ t}}}, (Φ,D,E1 ∧ σ)) (s-Comm)

if σ ∈ mguR(uµ↓ =? vµ↓, tµ↓ =? tµ↓)
(P ∪ {{P | Q}}, (Φ,D,E1))

ε−→s (P ∪ {{P,Q}}, (Φ,D,E1)) (s-Par)

(P ∪ {{u(x).Q}}, (Φ,D,E1))
Y (X)−−−→s (P ∪ {{Q}}, (Φ,D ∧X `? x ∧ Y `? y,E1 ∧ σ)) (s-In)

if σ ∈ mguR(y =? uµ↓) and X,Y ∈ X 2
:|Φ|

(P ∪ {{u〈t〉.Q}}, (Φ,D,E1))
Y 〈axn〉−−−−→s (P ∪ {{Q}}, (Φ ∪ {axn 7→ tσ↓},D ∧ Y `? y,E1 ∧ σ)) (s-Out)

if σ ∈ mguR(y =? uµ↓, tµ↓ =? tµ↓), y is fresh, X ∈ X 2
:n and n = |Φ|+ 1

where u, v and t are terms, x ∈ X 1, X,Y ∈ X 2, axn ∈ AX and µ = mgu(E1|=).

Figure 7: Symbolic semantics

Given a word w ∈ A∗s , we define the relation A
w
=⇒s B as A

a1−→s . . .
an−→s B where

w = a1 . . . an, n ∈ N and all second order variables in w are pairwise distinct. An example of
symbolic execution tree of processes introduced in example 5 is provided in fig. 8.

We now show that our symbolic semantics is sound and complete.

Lemma 7. Let (P, C) be a symbolic process. We have that

• if (P, C) trs=⇒s (Q, C′) and (Σ, σ) ∈ Sol (C′) then (Pσ,Φ(C)σ↓) trsΣ==⇒c (Qσ,Φ(C′)σ↓);

• if (Σ, σ) ∈ Sol (C) and (Pσ,Φ(C)σ)
tr
=⇒c (Q,Φ) then (P, C) trs=⇒s (Q′, C′) and (Σ′, σ′) ∈

Sol (C′) such that Σ′ � Σ, Q = Q′σ′, tr = trsΣ
′ and Φ = Φ(C′)σ′↓.

Note that taking a ground plain process P and C = C∅ the second item simplifies to

• if ({{P}}, ∅) tr
=⇒c (Q,Φ) then ({{P}}, C∅)

trs=⇒s (Q′, C′) and (Σ′, σ′) ∈ Sol (C′) such that
Q = Q′σ′, tr = trsΣ

′ and Φ = Φ(C′)σ′↓.

6.4 Partition Tree

To decide trace and observational equivalence, we introduce the notion of partition tree of two
plain processes, say P1 and P2. The aim is to build the (finite) tree of all possible symbolic
executions (regrouping processes reached by ε transitions in a same node), and additionally
partition solutions of constraint systems such all concrete processes represented by a node
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Pb,0 = {{P b}}
Φb,0 = ∅
Db,0 = ∅
E1
b,0 = ∅

Pb,1 =

{{
if proj2(x) = b then c〈0〉
else c〈proj2(x)〉

}}
Φb,1 = ∅
Db,1 = X `? x ∧ Y `? y
E1
b,1 = y =? c

Pb,2 = {{c〈0〉}}
Φb,2 = ∅
Db,2 = Db,1
E1
b,2 = E1

b,1 ∧ x =? 〈x1, b〉

Pb,4 = {{0}}
Φb,4 = {ax1 7→ 0}
Db,4 = Db,2 ∧ Z `? z
E1
b,4 = E1

b,2 ∧ z =? c

Z〈ax1〉

ε

Pb,3 = {{c〈proj2(x)〉}}
Φb,3 = ∅
Db,3 = Db,1
E1
b,3 = E1

b,1 ∧ ∀x1.x 6=
? 〈x1, b〉

Pb,5 = {{0}}
Φb,5 = {ax1 7→ x3}
Db,5 = Db,3 ∧ Z `? z
E1
b,5 = E1

b,3 ∧ z =? c

∧x =? 〈x2, x3〉

Z〈ax1〉

ε

Y (X)

Figure 8: Symbolic execution tree of P b, b ∈ {0, 1}

(which contains a set of symbolic processes) are statically equivalent. This partition tree will
allow us to construct a witness violating trace equivalence, resp. labelled bisimilarity, when
P1 6≈t P2, resp. P1 6≈` P2. The partition tree will be a finite tree whose nodes are labelled by
configurations.

Definition 15. A configuration is a triple (Γ, π, `) where

• Γ is a set of symbolic processes,

• π is a predicate on second-order solutions such that if π(Σ) and Σ′ � Σ then π(Σ′), and

• ` ∈ As ∪ {ε}

such that

1. for all (P, C) ∈ Γ, Solπ(C) 6= ∅ and |mgsπ(C)| = 1;

2. if (P1, C1), (P2, C2) ∈ Γ, (Σ, σ1) ∈ Solπ(C1) then (Σ, σ2) ∈ Solπ(C2) and Φ(C1)σ1 ∼
Φ(C2)σ2.

When a node n of a partition tree is labelled by (Γ, π, `) we denote by Γ(n), π(n), and
`(n) the corresponding elements of the configuration. Moreover, it follows from the above
definition that all constraint systems in Γ(n) for a given node n have a same, unique most
general solution, which we denote mgs(n).

Definition 16. Let P1 and P2 be two closed plain processes. A partition tree T of P1 and P2

is a finite tree whose nodes are labelled by configurations. It also verifies, for all nodes n and
(P, C) ∈ Γ(n):
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1. the initial processes are in the root:

if n is the root of the tree then `(n) = ε, π(n) = > and Γ(n) contains ({{P1}}, C∅) and
({{P2}}, C∅);

2. nodes are closed under ε-transition:

if (P, C) ε
=⇒s (P ′, C′) and Solπ(n)(C′) 6= ∅ then (P ′, C′) ∈ Γ;

3. completeness of the partition tree:

if (P, C) `
=⇒s (P ′, C′) and (Σ, σ) ∈ Solπ(n)(C′) then there exists n′ child of n s.t. (P ′, C′) ∈

Γ(n′), `(n′) = ` and (Σ′, σ) ∈ Solπ(n′)(C′) for some Σ′;

Besides, if nc is a child node of n and (Pc, Cc) ∈ Γ(nc):

4. predicates are refined along branches: π(nc) ⊆ π(n);

5. soundness of the partition tree:

if (Σ, σ) ∈ Solπ(n)(C), (Σc, σc) ∈ Solπ(nc)(Cc) and Σc � Σ, then Γ(nc) contains all

(P ′, C′) such that (P, C) `(nc)
===⇒s (P ′, C′) and Φ(Cc)σc ∼ Φ(C′)σ′ for some σ′ such that

(Σc, σ
′) ∈ Sol (C′).

Finally, we also impose a property of homogeneity of the mgs’ of the nodes:

6. for all subset S of nodes

if E = {X =? Xmgs(n) | X ∈ vars2(T ), n ∈ S} and Υ = mgu(E) 6= ⊥
then for all n ∈ S, mgs(nΥ) 6= ∅ entails mgs(nΥ) = {mgs(n)Υ|vars2(C)}.

We denote by PTree(P1, P2) the (infinite) set of all partition trees of P1 and P2.

Example 8. Two partition trees are presented in fig. 9. They use notations of fig. 8, Ebi =
({{Pb,i}}, (Φb,i,Db,i,E

1
b,i)), EbQ = (c〈proj2(x)〉, Cb,1) and

EfQ = ({{0}}, (Φf ,Df ,E
1
f )) Df = {X `? x, Y `? y, Z `? z}

Φf = {ax1 7→ x2} E1
f = {y =? c, z =? c, x = 〈x1, x2〉}

In this example, second-order predicates π are described by second-order formulas ϕ2

(casting the satisfiability relation of our first-order logic in the natural way).

Given T ∈ PTree(P1, P2) we write (P, C), n `′−→T (P ′, C′), n′ when

• n is a node in T with (P, C) ∈ Γ(n), and

• n has a child node n′ with (P ′, C′) ∈ Γ(n′), and

• (P, C) `′−→s (P ′, C′).

As for the other semantics, we write (P, C), n tr
=⇒T (P ′, C′), n′ when (P, C), n `1−→T . . .

`k−→T

(P ′, C′), n′ with tr = `1 . . . `k, k ∈ N. Note that when tr = ε, we write (P, C), n ε
=⇒T (P ′, C′), n

when (P ′, C′) ∈ Γ and (P, C) ε
=⇒s (P ′, C′).

As previously mentioned, we will use the partition tree to generate a witness that vio-
lates equivalence. To obtain a complexity upper bound, we have to bound the size of these
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Γ , ({{P 0}}, C∅), ({{Q}}, C∅)
` , ε

π , >

Γ , E01 , E02 , E0Q
` , Y (X)

π , X =?〈X1, 0〉

Γ , E04 , E
f
Q

` , Z〈ax1〉
π , X =?〈X1, 0〉

Z〈ax1〉

Y (X)

Γ , E01 , E03 , E0Q
` , Y (X)

π , ∀X1. X 6=?〈X1, 0〉

Γ , E05 , E
f
Q

` , Z〈ax1〉
π , ∀X1. X 6=?〈X1, 0〉

Z〈ax1〉

Y (X)

(a) Partition tree T0 ∈ PTree(P 0, Q)

Γ , ({{P 0}}, C∅), ({{Q}}, C∅)
` , ε

π , >

Γ , E01 , E02 , E0Q
` , Y (X)

π , X =?〈X1, 0〉

Γ , E04
` , Z〈ax1〉
π , X =?〈X1, 0〉

Z〈ax1〉

Γ , EfQ
` , Z〈ax1〉
π , X =?〈X1, 0〉

Z〈ax1〉

Y (X)

Γ , E01 , E03 , E0Q
` , Y (X)

π , ∀X1. X 6=?〈X1, 0〉

Γ , E05 , E
f
Q

` , Z〈ax1〉
π , ∀X1. X 6=?〈X1, 0〉

Z〈ax1〉

Y (X)

(b) Partition tree T1 ∈ PTree(P 1, Q)

Figure 9: Example of partition trees

witnesses. We show that for convergent subterm destructor rewriting system, we can always
obtain such a witness whose size (in DAG form) is exponential in the size (in DAG form) of
the plain processes and the rewriting system.

Theorem 5. There exists p ∈ N such that for all convergent subterm destructor rewriting
system R, closed plain processes P and Q there exists a partition tree T ∈ PTree(P,Q) such
that for all node n in T , for all Σ ∈ mgs(n), |Σ|dag < 2(|P |dag+|Q|dag+|R|dag)p.

In part III, we prove this theorem by presenting a procedure that solves PartitionTreep
for a constant p. (The constant p is derived from the measure used for proving termination
of the procedure.)

7 Decision procedures

7.1 Pure π-calculus

Static equivalence In the pure π-calculus, two frames Φ and Φ′ of same domain can only
contain (private or public) names. Hence, since F = ∅, static equivalence can be characterized
as follows:

Φ ∼ Φ′ if and only if dom(Φ) = dom(Φ′) ∧
∧

ξ,ξ′∈T

(
ξΦ = ξ′Φ⇔ ξΦ′ = ξ′Φ′

)
(5)

where T = dom(Φ) ∪ (names(Φ,Φ′) ∩Npub).
The characterization provided by eq. (5) is easily implementable by a quadratic procedure

storing a finite number of counters only, each of which being bounded by the size of T which
is linear in the size of the problem and whose representation in binary is of logarithmic size.
In particular, note that there is no need for T to be computed and stored (since it can be
read on-the-fly directly on the input) and analogously, testing an equality ξΦ = ξ′Φ does not
require additional storage space. Therefore, we obtain the following upper bound.

Theorem 6. Equiv∼∅,∅ is logspace.
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Trace equivalence and labelled bisimilarity Given two closed extended processes A0

and A1, let us recall the following characterization of trace equivalence:

A0 ≈t A1 if and only if ∀i ∈ {0, 1},∀Ai
tr
=⇒c A

′
i.∃A1−i

tr
=⇒c A

′
1−i.Φ(A′i) ∼ Φ(A′1−i) (6)

Without non-constant function symbols, there is a polynomial number of transitions from a
process A (seeing all names in Npub−names(A) as a single “fresh name” entity). In particular,

guessing a reduction A
tr
=⇒c A

′ from A is feasible in polynomial time (by a non-deterministic
Turing machine). This provides a polynomial-time decision procedure using an alternating
Turing machine, starting from a universal state and with at most one quantifier alternation
(which is a typical characterization of the complexity class Π2).

Theorem 7. Equiv≈t∅,∅ is Π2.

On the other hand, labelled bisimilarity may be characterized as:

A0 ≈` A1 if and only if

{
Φ(A0) ∼ Φ(A1)

∀i ∈ {0, 1}, ∀Ai
w−→c A

′
i, ∃A1−i

w
=⇒c A

′
1−i, A

′
i ≈` A′1−i

(7)

and similarly to above, this provides a straightforward procedure in alternating polynomial
time (which is a classical characterization of pspace).

Theorem 8. Equiv≈`∅,∅ is pspace.

7.2 Applied π-calculus

Static equivalence As discussed previously existing procedures for deciding static equiva-
lence for subterm convergent rewrite systems [AC06, CDK12, CBC10] are actually exponential
in the signature or equational theory, i.e., they show that for any signature F and subterm
convergent rewriting system R the problem Equiv�R,F is in ptime. As many modern tools
allow the user to define the signature and rewrite system, it is often more interesting to study
the complexity of Equiv∼.

Theorem 9. Equiv∼ for convergent subterm destructor rewriting systems is in conp.

Trace equivalence In this section we restrict ourselves to a convergent subterm destructor
rewriting system R.

Lemma 8. Let T be a partition tree, n, n′ nodes of T and (P1, C1), (P2, C2) ∈ Γ(n). If

(H1) (P1, C1), n
tr
=⇒T (P ′1, C′1), n′

(H2) (P2σ2,Φ(C2)σ2↓)
trΣ′
==⇒c (P,Φ)

(H3) (Σ′, σ1) ∈ Solπ(n′)(C′1), (Σ, σ2) ∈ Sol (C2)

(H4) Σ′ � Σ

(H5) Φ(C′1)σ1 ∼ Φ

then (P2, C2), n
tr
=⇒T (P ′2, C′2), n′ for some (P ′2, C′2).

32



Proof. We prove the result by induction on |tr|.
case tr = ε: The result directly follows from n = n′ and (P2, C2), n

ε
=⇒T (P2, C2), n.

case tr = ` · tr′: First of all, let us write in (H1) for some (P̃1, C̃1) and node ñ of T :

(P1, C1), n
`

=⇒T (P̃1, C̃1), ñ
tr′
=⇒T (P ′1, C′1), n′

In particular note that, by item 4 of definition 16 and since Σ′ satisfies π(n′) by (H3), Σ′

also satisfies π(ñ). Besides, we have in (H2) for some (P̃, Φ̃,):

(P2σ2,Φ(C2)σ2↓)
`Σ′
=⇒c (P̃, Φ̃)

trΣ′
==⇒c (P,Φ)

Using (H3) and completeness of the symbolic semantics (second item of lemma 7), we can
write the intermediary process under the form (P̃, Φ̃) = (P̃2σ̃2,Φ(C̃2)σ̃2) where

(P2, C2)
`

=⇒c (P̃2, C̃2) (Σ̃, σ̃2) ∈ Sol (C̃2) Σ̃ � Σ′

Observe that Σ̃ satisfies π(ñ) just like Σ′, since π(ñ) is stable by domain extention by
definition. Observe also that, by (H5), Φ(C̃2)σ̃2 = Φ̃ ∼ Φ(C̃1σ1). In particular, by item 5

of definition 16, we know that Γ(ñ) contains (P̃2, C̃2). Hence (P2, C2), n
`

=⇒T (P̃2, C̃2), ñ and
the conclusion follows from induction hypothesis.

Lemma 9. Let P1, P2 be two closed plain processes, T ∈ PTree(P1, P2) and n0 the root of T .

({{P1}}, ∅) vt ({{P2}}, ∅)
iff

if ({{P1}}, C∅), n0
tr
=⇒T (PA, CA), n then ({{P2}}, C∅), n0

tr
=⇒T (PB, CB), n

Proof. Suppose that n is labelled by (Γ, π, `). We prove both directions separately.

(⇒) We have, by definition of a partition tree (definition 16, item 1) that ({{P1}}, C∅)
and ({{P2}}, C∅) are both in the root node of T . Moreover, by Definition 15, there
exists (Σ, σ) ∈ Solπ(CA) and by the soundness of the symbolic semantics (Lemma 7),

we have that ({{P1}}, ∅)
trΣ
=⇒c (PAσ,Φ(CA)σ↓) and (∅, ∅) ∈ Sol (C∅). Suppose, by

contradiction that for all (PB, CB), ({{P2}}, C∅), n0 6
tr
=⇒T (PB, CB), n. By lemma 8, for

all (P,Φ), either ({{P2}}, ∅) 6
trΣ
=⇒c (P,Φ) or ({{P2}}, ∅)

trΣ
=⇒c (P,Φ) and Φ(CA)σ↓ 6∼ Φ

which implies ({{P1}}, ∅) 6vt ({{P2}}, ∅) leading to a contradiction.

(⇐) Suppose ({{P1}}, ∅)
trc=⇒c (P,Φ). We need to show that there exists (P ′,Φ′) such that

({{P2}}, ∅)
trc=⇒c (P ′,Φ′) and Φ ∼ Φ′. By a simple induction on |trc| we show that

there exist a word tr, a node n labelled (Γ, π, `), a symbolic process (PA, CA) ∈ Γ

and (Σ, σA) ∈ Sol (CA) such that ({{P1}}, C∅), n0
tr
=⇒T (PA, CA), n, Φ(CA)σA↓ = Φ

and trcΦ↓ = trΣΦ↓ : the proof is done by application of lemma 7 (completeness
of the symbolic semantics) and item 2 for the base case, respectively item 3 for
the inductive case, of definition 16. By hypothesis, there exists (PB, CB) such that

({{P2}}, C∅), n0
tr
=⇒T (PB, CB), n. Hence (PB, CB) ∈ Γ and so by definition 15, there ex-
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ists σB such that (Σ, σB) ∈ Sol (CB) and Φ = Φ(CA)σA↓ ∼ Φ(CB)σB↓. By Lemma 7,

({{P2}}, ∅)
trΣ
=⇒c (PBσB,Φ(CB)σB↓). As trcΦ↓ = trΣΦ↓ and Φ ∼ Φ(CB)σB↓ we

have that trcΦ(CB)σB↓ = trΣΦ(CB)σB↓. Hence, we conclude that ({{P2}}, ∅)
trc=⇒c

(PBσB,Φ(CB)σB↓).

By Lemma 9 and Theorem 5, we obtain the following corollary:

Corollary 1. There exists p ∈ N s.t. if ({{P1}}, ∅) 6≈t ({{P2}}, ∅) then there exists tr s.t.

• ({{P1}}, ∅)
tr
=⇒c (PA,ΦA) and for all (PB,ΦB) such that ({{P2}}, ∅)

tr
=⇒c (PB,ΦB) we have

that ΦA 6∼ ΦB

• |tr|dag < 2|P1,P2,R|pdag .

Theorem 10. Equiv≈t is conexp for convergent subterm destructor rewriting systems.

Proof. From the previous corollary we obtain a direct non-determinsistic procedure for
checking trace inequivalence of ({{P1}}, ∅) and ({{P2}}, ∅). First, guess the witness tr of

exponential size 2|P1,P2,R|pdag and a reduction (P1, ∅)
tr
=⇒c (PA,ΦA). For each (PB,ΦB) (at

most exponentially many) such that ({{P2}}, ∅)
tr
=⇒c (PB,ΦB), we verify that ΦA 6∼ ΦB by

guessing a witness of non-equivalence. As |tr|dag < 2|P1,P2,R|pdag the size of ΦA and ΦB is
at most exponential: such witnesses on non-static equivalence can therefore be chosen of
exponential size by theorem 9.

Remark 9. We note that our proof of theorem 10 did not rely on item 6 of definition 16:
indeed in the case of trace equivalence a weaker definition of a partition tree would have been
sufficient. The actual definition will however be necessary when proving the complexity upper
bound for labelled bisimilarity.

Labelled bisimilarity As for trace equivalence we restrict ourselves to a convergent sub-
term destructor rewriting system R. In the case of trace equivalence, a witness that A 6≈t B is
essentially a sequence of actions tr. In the case of labelled bisimilarity a witness that A 6≈` B
is the tree representing the adversary’s strategy. In each node the adversary choses an action
and successor process; the children of this node are all possible successors of the other process
using the same action.

Definition 17. A witness w is a set of triples (A0, A1, `) such that

1. A0 and A1 are closed extended processes such that A0 ∼ A1 and ` ∈ A ∪ {ε};

2. there exist b ∈ {0, 1}, ` ∈ A∪{ε} and a transition Ab
`−→c A

′
b such that for all reductions

A1−b
`

=⇒c A
′
1−b, w contains a (A′0, A

′
1, `
′) for some `′.

Besides, we say that w is a witness of (A,B) when (A,B, `) ∈ w for some ` ∈ A ∪ {ε}.
The size of w is written |w| (which is not the cardinality of w but the sum of the sizes of its
elements).

Lemma 10. If A0 and A1 are two closed extended processes such that A0 ∼ A1, then A0 6≈` A1

iff there exists a witness of (A0, A1).
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Proof. First, we observe that A0 6≈` A1 iff there exists a binary relation S on closed
extended processes such that A0SA1 and, for all (B0, B1) ∈ S :

1. either B0 6∼ B1

2. or there exists b ∈ {0, 1}, ` ∈ A ∪ {ε} and a transition Bb
`−→c B

′
b such that B′0SA′1

for all reductions B1−b
`

=⇒c B
′
1−b.

Let us call such a relation S a simple labelled attack on (A0, A1). Since processes are finite

(i.e.
·−→c is strongly terminating), A 6≈` B straightforwardly rephrases to the existence of a

simple labelled attack S such that ASB. Then we prove the expected result by double
implication.

⇒ We prove the result by induction on |A0, A1|. Let S be a simple labelled attack such

that A0SA1. Since A0 ∼ A1, we know that there exists b ∈ {0, 1} and Ab
`−→c A

′
b such

that A′0SA′1 for all A1−b
`

=⇒c A
′
1−b. For each such pair (A′0, A

′
1), since S is also a simple

labelled attack on (A′0, A
′
1), we obtain by induction hypothesis a distinguisher wA′0,A′1 of

(A′0, A
′
1) provided that A′0 ∼ A′1. The conclusion follows by defining

w = {(A0, A1, `)} ∪
⋃

A1−b
`

=⇒cA′1−b
A′0∼A′1

wA′0,A′1

which is a witness of (A′0, A
′
1).

⇐ Let w be a witness of (A0, A1). By writing S = {(A,B) | (A,B, `) ∈ w for some `}, we
easily obtain that S∪ 6∼ is a labelled attack on (A0, A1).

Example 9. Consider the running examples P 1 and Q introduced in example 5. A witness of
({{P 1}}, ∅) 6≈` ({{Q}}, ∅) is depicted in fig. 10. First, the adversary inputs 〈1, 1〉, selecting the
transition

(Q, ∅) c(〈1,1〉)−−−−→c ({{c〈proj2(〈1, 1〉)〉}}, ∅)

Whatever the answer of the defender, the adversary can then reach a leave of the tree by
choosing the transition

({{c〈proj2(〈1, 1〉)〉}}, ∅) c〈ax1〉−−−→c ({{0}}, {ax1 7→ 1})

The defender can indeed not answer to this move without violating static equivalence.

In order to show the existence of a witness whose size is at most exponential we introduce
the notion of symbolic witness. In essence, a symbolic witness can be seen as a subtree of a
partition tree PTree(A,B) where the labels Γ(n) have been restricted to pairs of processes (for
internal nodes) or single processes (for leaves, witnessing the end of the bisimulation game).

Definition 18. Let T be a partition tree, n0 be a node in T . A symbolic witness ws w.r.t. T
is a finite tree whose nodes N verify the following properties:

1. N is labelled by a pair (S, n) where n is a node of T and S ⊆ Γ(n). We require that S
is a singleton if N is a leaf of ws, and contain exactly two elements otherwise;
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({{P 1}}, ∅)
({{Q}}, ∅) ({{

if proj2(〈1, 1〉) = 1 then c〈0〉
else c〈proj2(〈1, 1〉)〉

}}
, ∅

)
({{c〈proj2(〈1, 1〉)〉}}, ∅)

({{c〈0〉}}, ∅)
({{c〈proj2(〈1, 1〉)〉}}, ∅)

c(1)

c〈ax1〉

c〈ax1〉

Figure 10: A concrete witness of ({{P 1}}, ∅) 6≈` ({{Q}}, ∅).

2. if N is labelled ({A0, A1}, n), it shall exist b ∈ {0, 1}, a node n′ of T and a reduction

Ab, n
`−→T A

′
b, n
′ (` ∈ As ∪ {ε}) such that:

(a) If A1−b
`

=⇒T A′1−b does not hold for any A′1−b, then N has a unique child labelled
({A′b}, n′);

(b) otherwise the children of N are the nodes labelled (A′0, A
′
1, n
′) with A1−b, n

`
=⇒T

A′1−b, n
′.

We say that ws is a symbolic witness for A,B, n0 when root(ws) is labelled by (A,B, n0).

We can now define the notion of solution of a symbolic witness: a second-order solution
of the processes of a node is associated to each node, in a coherent way, i.e., ensuring that
solutions of child nodes extend the solution of their parent.

Definition 19. Let ws be a symbolic witness w.r.t. a partition tree T . A solution of ws is a
function fsol that maps nodes of ws to ground second-order substitutions such that

• for all nodes N labelled (S, n) and (P, C) ∈ S, (fsol(N), σ) ∈ Solπ(n)(C) for some σ;

• for all edges (Np, Nc) of ws, fsol(Nc) � fsol(Np).

We denote Sol (ws) the set of solutions of ws.

We can now relate the notion of symbolic witness and the concrete labelled bisimulation.

Lemma 11. Let T be a partition tree, n a node of T and A0, A1 ∈ Γ(n) with Ai = (Pi, Ci).
Let also Σ, σ0, σ1 be ground substitutions such that (Σ, σi) ∈ Solπ(n)(Ci).

Then, writing Aci = (Piσi,Φ(Ci)σi↓), Ac0 6≈` Ac1 iff there exists a symbolic witness ws of
A0, A1, n w.r.t. T and fsol ∈ Sol (ws) such that fsol(root(ws)) = Σ.

Proof. We prove both directions separately.

⇒ We prove the result by induction on |Ac0, Ac1|. The conclusion is immediate if |Ac0, Ac1| = 0
as it yields a contradiction (two empty extended processes are equivalent). Otherwise,
since A0 and A1 are in the same node n of T , Ac0 ∼ Ac1 by definition of a partition tree
(definition 16). In particular, under the assumption Ac0 6≈` Ac1, we know by lemma 10 that

there exists a witness w of (Ac0, A
c
1). Thus, by definition, there exists Acb

`−→c A
′c
b = (Q,Φ)

(b ∈ {0, 1}, ` ∈ A ∪ {ε}) such that for all reductions Ac1−b
`

=⇒c A
′c
1−b such that A′c0 ∼ A′c0 ,

(A′c0 , A
′c
1 , `
′) ∈ w for some `′. In particular for these processes, A′c0 6≈` A′c1 by lemma 10.
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Let us now construct a symbolic witness of A0, A1, n. By completeness of the symbolic

semantics (lemma 7 second point), we have Σ′ � Σ and Ab
`s=⇒s (Qs, C) such that (Σ′, σ′) ∈

Solπ(n)(C) for some σ′, ` = `sΣ
′, Q = Qsσ′ and Φ = Φ(C)σ′↓. Then by completeness

of the partition tree (definition 16, item 3), we obtain a tree edge Ab, n
`s=⇒T (Qs, C), n′

for some node n′ and (Σ′′, σ′) ∈ Solπ(n′)(C) for some Σ′. Then, for each tree edges

A1−b, n
`s=⇒T A

′
1−b, n

′, we apply the soundness of the partition tree (definition 16, item 5)
and of the symbolic semantics (lemma 7 first point) and get the expected symbolic witness
by induction hypothesis.

⇐ We construct a concrete witness w of (Ac0, A
c
1). For each node of ws labelled (B0, B1, n)

with Bi = (QiB, CiB), w contains (Q0
BσB,Φ(C0

B)σ0
B↓), (Q1

Bσ
1
B,Φ(C1

B)σB↓), `, where we
have (fsol(n), σiB) ∈ Sol (C)iB and ` is given by item 2 of definition 19. It is straightforward
that w is a concrete witness by soundness of the partition tree (definition 16, item 5) and
of the symbolic semantics (lemma 7 first point). Note in particular that static equivalence
of processes in a same label of w follows from definition 15.

Finally, we can bound the size of the concrete witness of A 6≈` B.

Lemma 12. There exists p ∈ N such that if P,Q are two plain processes, there exists T ∈
PTree(P,Q) such that if ws is a symbolic witness of ({{P}}, C∅), ({{Q}}, C∅), root(T ) w.r.t. T
such that Sol (ws) 6= ∅ then there exists a witness wc of ({{P}}, ∅) 6≈` ({{Q}}, ∅) such that

|wc| < 2|P,Q,R|
p
dag .

Proof. It sufficies to prove that there exists a solution of ws os size bounded by 2|P,Q,R|
p
dag

for some p ∈ N (where the size of a solution fsol is
∑

N∈dom(fsol)
|fsol(N)|). Given P and Q,

we first let T be a partition tree given by theorem 5 (whose mgs’ are of exponential size).
First, using the same reasoning as lemma 9 (i.e. definition 16 and lemma 7) we obtain a
solution for each branch of ws. The solution can then be built bottom-up, performing a
unification at each node to ensure that all sibling nodes have father nodes mapped to a
common solution. In particular, note that this unification preserves the exponential size of
the solution by item 6 of definition 16.

Putting everything together we obtain:

Theorem 11. Equiv≈` for convergent subterm destructor rewriting systems is in conexp.

Proof. By lemmas 11 and 12, if P 6≈` Q then there exists a concrete witness w whose size
is bounded by 2|P,Q,R|

p
DAG for some p. Hence we obtain a straightforward procedure that

runs in exponential time on a non-deterministic machine. We first guess the witness w.
Checking the validity of w requires to explore the possibly exponential number of branches
of the tree and verify an exponential number of static equivalences. As the size of the
frames is at most exponential (given the bound on the size of w) it follows from theorem 9,
that the witnesses violating static equivalence of these frames can be checked in exponential
time. Hence, this yields a nexp procedure for checking whether ({{P}}, ∅) 6≈` ({{Q}}, ∅).
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Part III

Generating partition trees

8 Overview of the procedure

In the definition of partition trees of extended processes, the predicates π on second-order
solutions of constraint systems occurring in the label of each node of the partition tree play
a crucial role in the satisfaction of the properties stated in Definition 16. In particular,
it is thank to these predicates restricting the solutions of constraint systems that we can
partition the symbolic processes with statically equivalent solutions. In order to generate
these predicates, we will introduce the notion of extended constraint systems that contain
additional constraints allowing us to reason about the intruder knowledge. Intuitively, for
each node n of the partition tree and for each symbolic process (P, C) ∈ Γ(n), our procedure
will associate to (P, C) an extended constraint systems Ce such that Sol (Ce) = Solπ(n)(C).

Our procedure inductively builds the partition tree of (P0, C∅) and (P1, C∅) from the root
down to the leaves. First, the procedure is initialized by associating two extended constraint
systems Ce0 and Ce1 to (P0, C∅) and (P1, C∅) respectively such that Sol (C∅) = Sol (Cei ), for

i = 0, 1. Second, we build the set Sroot = {(P, C, Ce) | (Pi, C∅, Cei )
ε

=⇒s (P, C, Ce), i = 0, 1}
where the transition

ε−→s corresponds to the same transition rules in Figure 7 in which all
constraints added to the constraint system C are also added to the extended constraint Ce.
Third, we will apply some simplifications rules on the extended constraint systems in Sroot
until we obtain a set S′root such that (P, C, Ce1) ∈ S′root implies (P, C, Ce2) ∈ Sroot for some Ce2 and
it is trivial to decide whether Sol (Ce1) is empty or not. The root node of the partition tree is
then defined as the node labeled (Γ,>, ε) where Γ = {(P, C) | (P, C, Ce) ∈ S′root∧Sol (Ce) 6= ∅}.

To build the children of the root node, we will apply all input and output symbolic transi-
tions on the set S′root previously constructed in order to obtain two new sets of extended sym-

bolic processes Sin and Sout such that Sin = {(P ′, C′, Ce′) | (P, C, Ce) ∈ S′root∧(P, C, Ce) Y (X)
===⇒s

(P ′, C′, Ce′)} and Sout = {(P ′, C′, Ce′) | (P, C, Ce) ∈ S′root ∧ (P, C, Ce) Z〈axn+1〉
=====⇒s (P ′, C′, Ce′)}.

Note that X,Y, Z are considered fresh and n is the size of the frames in the constraint sys-
tems in S′root. At that point of the procedure, it still remains to partition the solutions of the
constraint systems in order to obtain statically equivalent solutions. For that purpose, we will
apply a series of case distinction and simplification rules on the extended constraint systems
in Sin and Sout to obtain the sets of sets Sin = {S1

in, . . . , S
p
in} and Sout = {S1

out, . . . , S
q
out}

such that for all i ∈ {1, . . . p}, if (P, C, Ce), (P ′, C′, Ce′) ∈ Siin, (Σ, σ) ∈ Sol (Ce) then (Σ, σ′) ∈
Sol (Ce′) and Φ(Ce)σ ∼ Φ(Ce′)σ′; and similarly for Sout. Note that this property corresponds
to the property 2 of Definition 15 the symbolic processes in a node of the partition tree must
satisfy. Hence the root node will have p+ q child defined as the nodes labeled (Γ, π, `) if and
only if:

• ` = Y (X), i = {1, . . . , p}, Γ = {(P, C) | (P, C, Ce) ∈ Siin}, π being the predicate such
that Σ ∈ π ⇔ ∃σ.(Σ, σ) ∈ Sol (Ce) where Ce is an extended constraint systems in Siin.

• ` = Z〈axn+1〉, i ∈ {1, . . . , q}, Γ = {(P, C) | (P, C, Ce) ∈ Siout}, π being the predicate
such that Σ ∈ π ⇔ ∃σ.(Σ, σ) ∈ Sol (Ce) where Ce is an extended constraint systems in
Siout.
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The procedure produces the children of these new nodes in a similar fashion starting this time
with the sets Siin and Sjout for all i, j.

Note that our case distinction and simplification rules will preserve the first order solutions
of the extended constraint systems which will allow us to derive the property 3 of Definition 16
for partition tree. Moreover, the goals of distinction rules are twofold: They will partition
the solutions of the extended constraint systems w.r.t. to the static equivalence as previously
mentioned, but they will also simplify the constraint systems until it possesses a unique most
general solution easily computed. The latter goal will allow us to prove all the properties on
most general solutions in Definitions 15 and 16 that a partition tree must satisfy.

9 Extended constraint system

Before defining the extended constraint systems, we first need to extend our first-order logic
for expressing constraints. More specifically, we introduce two new atomic formulas ξ =? ξ′

and ξ =?
f ξ
′. The former formula is called recipe equation and its semantics correspond to

the syntactic equality between the two recipes ξ, ξ′, similarly to the syntactic equations on
protocol terms. The latter formula is called equality fact and holds when the two recipes ξ
and ξ′ deduce the same protocol term w.r.t. a frame. Its semantics is defined as:

(Φ,Σ, σ) |= ζ =?
f ζ
′ iff ζΣΦ↓ = ζ ′ΣΦ↓, Msg(ζΣΦ) and Msg(ζ ′ΣΦ)

Moreover, we introduce particular kinds of first-order formulas called deduction, respectively
equality formulas.

Definition 20 (Recipe, Deduction and equality formula). A recipe formula ψ is a first-order
logic formula built over recipe equations. A deduction, respectively equality, formula is defined
as ∀S.H ⇐ C1 ∧ . . . ∧ Cn where:

• S is a set of (both first order and second order) variables;

• H is a deduction, respectively equality, fact;

• for all i ∈ {1, . . . , n}, Ci is either a a deduction fact of the form X `? t with X ∈ X 2

or a syntactic equation.

A deduction, resp. equality, formula ψ is solved when

ψ = ∀X1, . . . Xn, x1, . . . , xn.H ⇐ X1 `? x1 ∧ . . . ∧Xn `? xn

and all Xi, xi (1 ≤ i ≤ n) are pairwise distinct variables, {X1, . . . Xn} ⊆ vars(H). When H
is a deduction fact, its protocol term is called the head term of the formula.

We note that in particular any deduction, respectively equality, fact is a solved deduction,
respectively equality, formula with no bound variables.

Given a formula ψ = (∀S.H ⇐ ϕ), we denote by D(ϕ) the set of deduction facts in ϕ,
E1(ϕ) the set of formulas over syntactic equations in ϕ. We denote α[ψ] = mgu(E1(ϕ)) and we
also denote by vars(ψ), vars1(ψ), vars2(ψ) the free (respectively, first-order, or second-order)
variables of ψ and by bvars(ψ), bvars1(ψ), bvars2(ψ) the bound (respectively, first-order,
second-order) variables of ψ.
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Intuitively, a deduction formula represents which terms are deducible by the adversary.
The premisses C1, . . . , Cn express conditions under which the deduction fact holds. For solved
deduction facts these premisses are trivially satisfiable. Similarly, equality formulas express
which recipes are equivalent, i.e., allow the adversary to deduce the same term. As we are
interested in equivalence properties, we need to keep both track of deducible terms, and
equivalence of recipes.

We now introduce the notion of consequence, which defines the set of terms derivable by
an adversary by applying public contexts to already deducible terms described by a set of
solved deduction facts.

Definition 21 (Consequence). Let S be a set of deduction facts. We define the set of con-
sequences of S, denoted Conseq(S) as the set of pair (C[ξ1, . . . , ξn], C[u1, . . . , un]) such that
C[ , . . . , ] is a context built on Fc ∪Npub and for all i ∈ {1, . . . , n}, ξi `? ui ∈ S.

We write ξ ∈ Conseq(S), if ∃t.(ξ, t) ∈ Conseq(S).

If ξ ∈ Conseq(S) with ξ = C[ξ1, . . . , ξn] as described in Definition 21, we denote by
stc(ξ,S) the set {ξ|p | p is a position of C[ , . . . , ]}. If R is a set of recipes, we denote by
stc(R,S) the set ∪ξ∈Rstc(ξ,S).

We finally define the notion of extended constraint systems and their solutions.

Definition 22. An extended constraint system is C defined as (Φ,D,E1,E2,K,F) where:

• (Φ,D,E1) is a constraint system;

• E2 is a conjunction of recipe equations or formulas of the form ∀Y1, . . . , Yk.
∨p
j=1 ξj 6=?

ζj;

• K is a conjunction of deduction facts;

• F is a conjunction of deduction or equality formulas.

Additionally, we ask that vars1(K,F) ⊆ vars1(E1,D), vars2(K,F) ⊆ vars2(E2,D) and all uni-
versally quantified second-order variables of E2, K, F are in X 2

|Φ|. Finally, we require that

there exists σ = mgu(E1|=) such that vars1(img(σ)) ⊆ vars1(D).

The set E2 adds new constraints on recipes to be fulfilled and the set of formulas in K and
F represent the attacker knowledge. The solved deduction facts in K represent the deducible
protocol terms: a deduction fact ξ `? u expresses that the attacker knows u by using the
recipe ξ. The set of deduction formulas in F reasons about potentially deducible terms. After
an output transition, our algorithm will apply some case distinctions on whether the new
output term can generate new protocol terms deducible by the attacker. The conditions
under which such terms are deducible are modelled by adding a deduction formula in F. The
algorithm will try to simplify this deduction formula until it becomes a deduction fact. When
it is the case, it can be easily decided whether the deduction formula’s head protocol term is
in fact a new deducible term (it will then be added to K) or a consequence of the deduction
facts already in K. Similarly equality formulas represent potential equalities that may hold.

Definition 23 (Solutions). A pair of substitutions (Σ, σ) is a solution of an extended con-
straint system (Φ,D,E1,E2,K,F) if (Φσ,Σ, σ) |= D ∧ E1 ∧ E2 and the following two properties
hold:
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• for all ξ ∈ st(img(Σ)) ∪ sst(KΣ), Msg(ξΦσ) and (ξ, ξΦσ↓) ∈ Conseq(KΣσ)

• for all ξ, ξ′ ∈ stc(img(Σ),KΣ), ξΦσ↓ = ξ′Φσ↓ implies ξ = ξ′.

The set of solutions of an extended constraint system C is denoted Sol (C). An extended
constraint system C is satisfiable if Sol (C) 6= ∅. We will denote by ⊥ an unsatisfiable extended
constraint system.

10 Computing most general solutions of an extended con-
straint system

From the definition, we know that the recipes in a solution of an extended constraint system
must always be consequence of set of deduction facts K, i.e. they should always be built as a
public context applied to recipe of K. Moreover, we also know that two different recipes in the
solution should deduce different protocol terms. Thanks to these properties, the most general
solutions of an extended constraint system can be easily computed with a simple constraint
solving transition system. For instance, the uniformity of a solution can be expressing by the
following transition rule.

(Φ,D,E1,E2,K,F)
Σ−→ (Φ,D′,E1,E2Σ ∧ Σ,KΣ,FΣ) (8)

if (ξ, ζ) ∈ R(C)2∪(Npub×vars2(D)) and ∃u. (ξ, u), (ζ, u) ∈ Conseq(K∪D), Σ = mgu(ξ =? ζ),
Σ 6= ∅, Σ 6= ⊥, D′ = D \ {X `? v ∈ D | X ∈ dom(Σ)} and R(C) is syntactic sugar for
stc(img(mgu(E2(C))),K ∪ D) ∪ vars2(D).

Note that the set R(C) typically represents all recipes in the constraint system that are
already used to constraint the solutions of C. Therefore, when u is not a public name or a
term already deduced by a recipe in R(C), we can apply one of the two following rules, defined
as follows, indicating that either the solutions are rooted by a public symbol or are recipes of
K.

(Φ,D ∧X:k `? u,E1,E2,K,F)
Σ−→ (Φ,D ∧

n∧
i=1

Xi:k `? ui,E
1,E2Σ ∧ Σ,KΣ,FΣ) (9)

if u = f(u1, . . . , un), Σ = {X → f(X1, . . . , Xn)} with X1, . . . , Xn fresh and for all ξ, ζ ∈
R(C) \ {X}, (ξ, u) 6∈ Conseq(K ∪ D),

(Φ,D ∧X:k `? u,E1,E2,K,F)
Σ−→ (Φ,D,E1 ∧ u =? v,E2Σ ∧ Σ,KΣ,FΣ) (10)

when u 6∈ X 1, ξ `? v ∈ K, mgu(X =? ξ) 6= ⊥, Σ = {X → ξ} and for all ξ ∈ R(C) \ {X},
(ξ, u) 6∈ Conseq(K ∪ D).

We also simplify the syntactic equations and recipes equations on the constraint systems
after each transition step, e.g. by computing the mgu of the terms u and v in Rule 10 and
applying it on the rest of the constraint system, or by replacing the constraint system with ⊥
when u and v are not unifiable. Theses simplifications typically apply the equations on the
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constraint systems and ensure that the disequations and uniformity property are not trivially
unsatisfiable. The simplification rules in Figure 11 and as follows.

(Φ,D,E1 ∧ x =? u,E2,K,F)  (Φσ,Dσ,E1σ ∧ x =? u,E2,Kσ,Fσ) (11)

if x 6∈ vars1(u), x ∈ vars1(E1,D,Φ,K,F) and σ = {x→ u}
(Φ,D,E1,E2,K,F)  ⊥ (12)

if ξ, ζ ∈ R(C), (ξ, u), (ζ, u) ∈ Conseq(K ∪ D) and (E2 ∧ ξ =? ζ)

 

= ⊥

¬> ⊥ ¬⊥ > ϕ ∨ > > ϕ ∨ ⊥ ϕ π =? π  >

∀S ∪ {α}. ϕ  ∀S. ϕ if α 6∈ vars(ϕ)∨n
i=1 πi 6=? $i  > if mgu(

∧n
i=1 πi =? $i) = ⊥

f(π1, . . . , πn) =? f($1, . . . , $n)  
∧n
i=1 πi =? $i

∀S ∪ {α}.(ϕ ∨ α 6=? π)  ∀S.ϕσ if σ = {α→ π} and α 6∈ vars(π)
∀S.(ϕ ∨ α 6=? π)  ∀S.(ϕσ ∨ α 6=? π) if σ = {α→ π} and α ∈ vars(ϕ) \ vars(π)

Figure 11: Simplification rules on formulae

The simplification rules displayed in Figure 11 apply to formulas in D,E1,E2,F. We present
the simplification rules, as if all formulae were in disjunctive normal form. As some rules are
similar for both protocol terms and recipes we use metavariables (α, π,$) which can be either
replaced by (x, u, v) or (X:i, ξ, ζ) where ξ, ζ ∈ T 2

i . The first block of rules reflect standard
logical rules. The second block of rules simplify (recipe) (dis)equations which may appear in
E1,E2,F. The third block of rules applies a substitution {α 7→ π} in case we have a disjunct
α 6=? π. Note that when α is bound the disjunct may be completely removed while otherwise
it is essential for the correctness of the simplification rule to keep the disjunct (as α appears
in the domain of the solution). The simplification relation is homomorphically extended to
more complex formulas, i.e., ϕ[ψ]  ϕ[ψ′] if ψ  ψ′. Note that our simplification rules are
confluent modulo renaming of variables. Hence, we denote C

 

the extended constraint system
such that C  ∗ C

 

and C

 

6 .
To obtain the most general unifier of the constraint system, it suffices to apply the tran-

sition rules until none is applicable. In such a case, we consider that the constraint system in
solved form. In particular, it implies that all deduction facts in D have distinct variables as
right hand term and for all (ξ, ζ) ∈ R(C)2∪ (Npub× vars2(D)), (ξ, u), (ζ, u) ∈ Conseq(K∪D)
implies ξ = ζ. For such constraint system, we can easily show that mgu(E2)Σ is a solution
where Σ is a bijection from the recipes variables in D to fresh public names, meaning that its

most general solutions are unique and is the substitution mgu(E2). Let us we denote C Σ−→

 

C′

when C Σ−→ C′′ and C′ = C′′

 

, and C Σ
=⇒

 

C′ when C Σ1−→

 

. . .
Σn−−→

 

C′ with Σ = Σ1 . . .Σn, we
prove the following lemma.

Lemma 13. Let C be an extended constraint system obtained during the procedure

mgs(C) = {Σ|vars2(C) | C
Σ
=⇒

 

C′, C′ 6= ⊥, C′ solved}
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11 Symbolic rules

As mentioned in the overview, our procedure will alternate between symbolic, simplification
and case distinction rule. In Figure 7, we provided the symbolic rules for a process and
its constraint system. The symbolic rules for a process, its contraint system and extended
constraint system are very similar as they add the same contraint on both contraint system
and extended constraint system (see Figure 12).

(P ∪ {{0}}, C, Ce) ε−→s (P, C, Ce) (e-Null)

(P ∪ {{if u = v thenQ1 elseQ2}}, C, Ce)
ε−→s (e-Then)

(P ∪ {{Q1}}, C[E1 7→ E1 ∧ σ], Ce[E1 7→ E1 ∧ σ])
if σ ∈ mguR(uµ↓ =? vµ↓)

(P ∪ {{if u = v thenQ1 elseQ2}}, C, Ce)
ε−→s (e-Else)

(P ∪ {{Q2}}, C[E1 7→ E1 ∧ synR(uµ↓ 6=? vµ↓)], Ce[E1 7→ E1 ∧ synR(uµ↓ 6=? vµ↓)])
(P ∪ {{u〈t〉.Q1, v(x).Q2}}, C, Ce)

ε−→s (e-Comm)
(P ∪ {{Q1, Q2{x→ t}}}, C[E1 7→ E1 ∧ σ], Ce[E1 7→ E1 ∧ σ])

if σ ∈ mguR(uµ↓ =? vµ↓, tµ↓ =? tµ↓)
(P ∪ {{P | Q}}, C, Ce) ε−→s (P ∪ {{P,Q}}, C, Ce) (e-Par)

(P ∪ {{u(x).Q}}, C, Ce) Y (X)−−−→s (e-In)
(P ∪ {{Q}}, C[D 7→ D ∧X `? x ∧ Y `? y,E1 7→ E1 ∧ σ],
Ce[D 7→ D ∧X `? x ∧ Y `? y,E1 7→ E1 ∧ σ])

if σ ∈ mguR(y =? uµ↓) and X,Y ∈ X 2
:|Φ|

(P ∪ {{u〈t〉.Q}}, (Φ,D,E1), Ce) Y 〈axn〉−−−−→s (e-Out)
(P ∪ {{Q}}, (Φ ∪ {axn 7→ tσ↓},D ∧ Y `? y,E1 ∧ σ),
Ce[Φ 7→ Φ ∪ {axn 7→ tσ↓},D 7→ D ∧ Y `? y,E1 7→ E1 ∧ σ])

if σ ∈ mguR(y =? uµ↓, tµ↓ =? tµ↓), y is fresh, X ∈ X 2
:n and n = |Φ|+ 1

where u, v and t are terms, x ∈ X 1, X,Y ∈ X 2, axn ∈ AX and µ = mgu(E1(C)|=).

Figure 12: Symbolic semantics with extended constraint systems

12 Simplification rules

Before defining the case distinction rules, we consider additional simplification rules to the
one defined for computing most general solutions and displayed in 13 and 14. These rules
aim to simplify the set of symbolic extended processes generated by the algorithm so that
they can reach a simple form. In particular, a set of symbolic extended processes in simple
form will have the remarkable property of having all its extended constraint systems pairwise
symbolically equivalent. Such a simple form is reached when for all extended constraint
systems C, the head terms of D(C)’s constraints are pairwise distinct variables, E1(C) only
contains equations of the form xi =? ui which can be interpreted as a (acyclic) substitution
{xi → ui}i such that the variables in its domain do not occur anywhere else in C. Moreover,
a constraint system in simple form also have saturated sets K(C) and F(C), i.e., all messages
that are deducible by the attacker are a consequence of K(C) and D(C), and all equalities of
recipes within the frame are instances of a solved equality formula in F(C).
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The simplification rules in Figure 13 directly focus on extended constraint systems and
are naturally uplifted to (sets of (sets of)) extended symbolic processes. We also naturally
lift the rules of Figure 11 from individual elements of the extended constraint system to the
extended constraint system itself. For example, (Φ,D,E1,E2,K,F)  (Φ,D,E1′,E2,K,F) if
E1  E1′.

(Φ,D,E1 ∧ x =? u,E2,K,F) (Φσ,Dσ,E1σ ∧ x =? u,E2,Kσ,Fσ) (13)

if x 6∈ vars1(u), x ∈ vars1(E1,D,Φ,K,F) and σ = {x→ u}

C  ⊥ if mgs(C) = ∅ (14)

C[E1 ∧ ∀x̃.φ] C[E1 ∧ ∀x̃.φ 7→ E1] if mgs(C[E1]mgu(∀x̃.φ)) = ∅ (15)

C[F ∪ {ψ}] C[F ∪ {ψ} 7→ F] if mgs(C|ψ) = ∅ (16)

C[F ∪ {ψ}] C[F ∪ {ψ} 7→ F] (17)

if ψ′ ∈ F, ψ′ 'r ψ and ψ′ solved

Figure 13: Normalisation rules on constraint systems

Rule 13 propagates a simple constraint of the form x =? u in E1 to the whole constraint
system. The next three rules exploit the existence of a most general solution of the constraint
system. In particular Rule 14 checks whether the constraint system is unsatisfiable, i.e. does
not have most general solution. When it is the case then the constraint system is transform
into ⊥. Rule 15 similarly remove a disequations ∀x̃.φ in E1 when she is trivially satisfiable.
In particular, the rule will check whether the constraint system C without the disequation
∀x̃.φ, i.e. C[E1], can have a solution that would contradict the disequation. To enforce such
solutions, we apply on C[E1] the substitution mgu(∀x̃.φ) where mgu(∀x̃.

∨
i ui 6=? vi) is the

substitution mgu(
∧
i ui =? vi) with a fresh renaming of the variables in x̃.

Finally Rule 16 remove a formula from F when its hypotheses are unsatisfiable in the
constraint system. To check this, we add the hypothesis to the constraint system and
verifies the existence of most general solutions. Formally, we given a constraint system
C = (Φ,D,E1,E2,K,F) and a formula ψ = ∀S.H ⇐ ϕ, we define C|ψ as the constraint system
(Φ,D ∪ D(ψ),E1 ∧ E1(ψ),E2,K,F).

Rule 17 removes an unsolved deduction or equality formula ψ from F when there exists
another recipe equivalent, solved formula. Formally, two deduction, respectively equality
formulas ψ and ψ′ are recipe equivalent, denoted ψ 'r ψ

′, when they have the same recipes (up
to α-conversion of bound variables) in the head of the formula and put the same constraints
on the recipes in the hypotheses of the formulas. Typically, the solved, recipe equivalent
formula subsumes all the solutions of ψ.

We also consider normalization rules that focus on sets of sets of symbolic extended
processes (Figure 14). Rule 18 allows to remove ⊥ elements of the vector. In rules 20 and 21,
we assume that ∀1 ≤ i ≤ n. Cei = (Φi,Di,E

1
i ,E

2
i ,Ki,Fi), Cei 6 and Cei 6= ⊥. Rule 19 split

a set of extended symbolic processes whenever a common solution would yield statically
inequivalent frames. More specifically, the rule separates constraint systems in which a given
recipe always yields a message, resp. an equality always holds, from the constraint systems
in which the same recipe would never yield a message, resp. the same equality would never
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S ∪ {Γ ∪ {(P, C,⊥)}} S ∪ {Γ} (18)

S ∪ {{(Pi, Ci, Cei )}ni=1 ∪ {(P ′i, C′i, Cei
′)}mi=1} S ∪ {{(Pi, Ci, Cei )}ni=1, {(P ′i, C′i, Cei

′)}mi=1} (19)

if n 6= 0, m 6= 0 and there exists ψ s.t. ∀i, ∃ψ′ ∈ F(Cei ).ψ 'r ψ
′ and ψ′ solved; and

∀i,∀ψ′ ∈ F(Cei ′), ψ 6'r ψ
′.

S ∪ {{(Pi, Ci, Cei )}ni=1} S ∪ {{(Pi, Ci, Cei [K 7→ K ∪ {ψi}])}ni=1} (20)

if ∀i. Cei is solved and ∃ξ.∀i.∃ui. ψi = ξ `? ui ∈ Fi and ui 6∈ Conseq(Ki ∪ Di).

S ∪ {{(Pi, Ci, Cei )}ni=1} S ∪ {{(Pi, Ci, Cei [F 7→ F ∪ {ψ:(Σ, Ci)}])}ni=1} (21)

if ∀i. Ci is solved, ∃ξ.∀i.∃ui. ξ `? ui ∈ Fi and ∃i1.ζ such that:

• (ζ, u1) ∈ Conseq(Ki1 ∪ Di1)

• Σ = {X → ξ, Y → ζ} and ψ = ∀{X,Y, z}.(X =?
f Y ) ⇐ X `? z ∧ Y `? z with X,Y, z

fresh variables.

• ∀i.∀(∀S.ζ1 =?
f ζ2 ⇐ ϕ) ∈ Fi, ζ1 6= ξ or ζ2 6= ξ

Figure 14: Simplification rules for sets of sets of extended symbolic processes

hold. This is characterised by the fact that a deduction, resp. equality, formula is solved
in some constraint systems and not in the others. Rule 20 allows to add a solved deduction
formula from Fi to Ki when this formula is solved in all extended constraint systems of the
set and the first-order terms in their head are not already a consequence of the set of solved
deduction formulae. Finally rule 21 adds an equality formula to each constraint system when
the protocol term in a head’s solved deduction fact is a consequence of its set of solved
deduction facts K, modeling the fact that ξ =?

f ζ should hold. For termination purposes,
we also require that at least one recipe equivalent deduction fact in some other constraint
systems should not be consequence of its set of solved deduction facts.

Note that in rule 21, we rely on a new notation ψ:(Σ, Ci) to describe the formula generated
by applying the substitution Σ on the formula ψ. However, such application is different from
the classical application of substitution uplifted to formula. More specifically, we will ensure
that all second order variables are linked to a deduction fact in ψ. This is formally defined
as follows.

Definition 24. Let C = (Φ,D,E1,E2,K,F) be an extended constraint system. Let ψ =
∀S.H ⇐ ϕ be a formula. Let Σ be a substitution. We denote ψ:(Σ, C) the formula

∀S′.HΣ⇐ E1(ψ) ∧D ∧ E

where D = D(ψ) ∪ D′, D′ = {Y `? y | Y ∈ vars2(img(Σ)) \ vars2(C, ψ), y fresh} \ {Y `?
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u ∈ D(ψ) | Y ∈ dom(Σ)}, S′ = vars1(D′) and E = {u =? v | Y `? u ∈ D(ψ), Y ∈
dom(Σ), (Y Σ, v) ∈ Conseq(K ∪ D ∪D).

Note that our simplifications are not confluent in general. Thus we denote by S

 

the set
{S ′ | S  ∗ S ′ ∧ S ′ 6 }. We call each element of S

 

an irreducible form of S.

13 Case distinction rules

As previously mentioned, the purposes of case distinction rules is to transform a set of ex-
tended symbolic process into sets of extended symbolic process where the constraint systems
in each set have statically equivalence solutions. As such, one can see our case distinction
rules as transition rules on a set of sets of extended symbolic process. We consider three case
distinction rules and one final rule.

13.1 Rule SAT

The first rule, called Sat, focuses on the satisfiability of the extended constraint systems.
Intuitively, since we aim to obtain that each constraint systems in a set has the same second-
order solution, they should also have the same most general solutions. Therefore, for all most
general solutions of a constraint system in a set, the rule will do a case distinction on whether
or not the solutions of all the constraint systems in the same set are an instance of this most
general solution. This can be formalized as follows. The satisfiability case distinction rule
will also be applied to solve syntactic disequations and formulas in F. The rule Sat can be
formalized as follows.

S ∪ {{(Pi, Ci, Cei )}ni=1} → S ∪ {{(Pi, Ci, Cei :Σ)}ni=1} ∪ {{(Pi, Ci, Cei [E2 ∧ ¬Σ])}ni=1} (22)

if there exists j such that either (a) Cej not solved and Σ ∈ mgs(Cej ) or (b) ∃ψ ∈ F(Cej ). ψ not

solved and Σ ∈ mgs(Cej |ψ) or (c) ∃(∀x̃.φ) ∈ E1(Cej ). Σ ∈ mgs(Cej ′mgu(∀x̃.φ)) where Cej ′ is the

constraint system Cej where ∀x̃.φ was removed from E1(Cej ).

Note that ¬Σ is syntactic sugar for ∀S.
∨
X∈dom(Σ)X 6=? XΣ with S = vars2(Σ)\vars2(Cei ).

Moreover, C:Σ denotes the application of the most general solution Σ on C. Similarly to the
application of most general solutions on a formula defined in Definition 24, C:Σ is not the
standard application of a substitution on a constraint system. Indeed, all recipe variables in
a constraint system must either appear in a deduction fact in D or in the domain of mgu(E2).
Hence, all the new recipe variables that can be introduced by the most general solution Σ
should be affected to a deduction fact. For example, if Σ = {X → f(ξ,X1, X2)} with X1, X2

new variables and C = (Φ,D∧X:k `? u,E1,E2,K,F) with ξ `? v ∈ K then C:Σ is the constraint
system (Φ,D ∧ X1 `? x1 ∧ X2 `? x2,E

1 ∧ u =? f(v, x1, x2),E2Σ,KΣ,FΣ). This is formally
defined as follows.

Definition 25. Let C = (Φ,D,E1,E2,K,F) be an extended constraint system. Let Σ be a
substitution. We denote C:Σ the constraint system:

(Φ, D,E,E2Σ ∧ Σ|vars2(C),KΣ,FΣ)

where D = D ∪ {Y `? y | Y ∈ vars2(img(Σ|vars2(C))) \ vars2(C), y fresh} \ {Y `? u ∈ D | Y ∈
dom(Σ)} and E = E1 ∪ {u =? v | X `? u ∈ D, X ∈ dom(Σ), (XΣ, v) ∈ Conseq(KΣ ∪D)}.
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13.2 Rule REW

The second case distinction rule focuses on the knowledge of the attacker. For example, when
the last symbolic transition corresponds to an output, the rule will apply rewrite rules on
this output to determine whether new messages can be learned by the attacker. Generally
speaking, since deduction facts in K represent the current knowledge of the intruder, the rule
Rew checks whether an attacker can apply a rewrite rule `→ r on a deduction fact ξ0 `? u0

from the set of deduction facts K in a constraint system to deduce a new term. For the rewrite
rule to apply the attacker may however need to first apply a context on u0. To define the
context that unifies with the left-hand side of the rewrite rule and, at position p, with the
term u0 we introduce the notion of a skeleton.

Definition 26. Given a term ` and a position p of t we define the set of skeletons for (t, p),
denoted Skel(t, p), to be the set of tuple (ξ, u,D) such that ξ ∈ T (F ,X 2), u ∈ T (F ,X 1), D is
a set of deduction facts and

(root(ξ|q), root(u|q)) =

{
(root(t|q), root(t|q)) for any strict prefix q of p
(Xq, xq) for any other position q of ξ

where the set of variables Xq (resp. xq) (q a position of ξ) are fresh, pairwise distinct variables
in X 2 (resp. xq). Moreover, D is the smallest set that contains all deduction facts Xq `? xq.

We may note that the set of skeletons actually contains one element up to renaming of
variables.

Example 10. Let t = sdec(senc(y, z), z). Then we have that

• Skel(t, 1) = Skel(t, 2) = (sdec(X0, X1), sdec(x0, x1), {X0 `? x0, X1 `? x1})

• Skel(t, 1 ·1) = (sdec(senc(X0, X1), X2), sdec(senc(x0, x1), x2), {X0 `? x0, X1 `? x1, X2 `?

x2})

For a skeleton (ξ, t,D) ∈ Skel(`, p), the recipe ξ represents the recipe that the attacker
will apply on ξ0 `? u0 at the position p, the term t represent the corresponding generic
term on which the rewrite rule will be applied and finally D is the set of deduction that
links the second-order variables with the first-order variables. However, the behavior of a
destructor function symbol can be describe by multiple rewrite rules. Hence the application
of ξ on ξ0 `? u0 may trigger the rewrite rule `→ r in one constraint system but may trigger
another rewrite rule `′ → r′ in another constraint system with typically root(`) = root(`′).
Hence, since it is impossible to know in advance which rewrite rule will be applied in all
constraint systems, we consider all possible cases. The next definition describes the set of
generic formulas corresponding to the application of each rewrite rules.

Definition 27. Let ξ ∈ T (F ,X 2). Let ` → r ∈ R. Let p a position ` different from ε. We
define the set RewF(ξ, ` → r, p) = {∀S.ξ `? r′ ⇐ D ∧ `′ =? t | S = vars(ξ, r′) ∧ `′ → r′ ∈
R, (ξ, t,D) = Skel(`, p)}.

The rule Rew can now be formally defined as follows.

S ∪ {{(Pi, Ci, Cei )}ni=1}
→

S ∪
{
{(Pi, Ci, Cei :Σ[F→ F ∪ {ψ:(Σ0ΣΣ1, Cei :Σ) | ψ ∈ RewF(ξ, `→ r, p)}])}ni=1,
{(Pi, Ci, Cei [E2 ∧ ¬Σ])}ni=1

} (23)
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if ` → r ∈ R, ∃p position of `, ξ ∈ T (F ,X 2
:k) with k = |Φ(Ce1)|, ∃i. ∃ψ0 ∈ RewF(ξ, ` → r, p).

∃(ξ0 `? u0) ∈ K(Cei ) such that:

• Σ0 = {ξ|p → ξ0}, Σ ∈ mgs(Cei |ψ0:(Σ0,Cei )); and

• ψ0:(Σ0Σ, Cei :Σ) is a solved formula ∀S.ζ `? v ⇐ ϕ such that Σ1 is a bijection from
vars2(ϕ) to Npub; and ψ0:(Σ0ΣΣ2, Cei :Σ) 6∈ Fi for all bijections from vars2(ϕ) to Npub.

13.3 Rule EQ

The third case distinction rule focuses on the static equivalence between solutions of extended
constraint systems. More specifically, the rule Equality checks whether a deduction fact
ξ1 `? u1 from the set of deduction facts K can deduce the same term as another recipe
consequence of K. The rule is formalized as follows.

S ∪ {{(Pi, Ci, Cei )}ni=1}
→

S ∪
{
{(Pi, Ci, Cei :Σ[F→ F ∪ {ψ:(Σ0Σ, Ci:Σ)}])}ni=1,
{(Pi, Ci, Cei [E2 ∧ ¬Σ])}ni=1

} (24)

if ∃i. Σ ∈ mgs(Cei |ψ:(Σ0,Cei )), ψ:(Σ0Σ, Cei :Σ) is solved and:

• either Σ0 = {X → ξ1, Y → ξ2} for some (ξ1 `? u1), (ξ2 `? u2) ∈ K(Cei ) and for all
(∀S.H ⇐ ϕ) ∈ F(Cei ), H 6= (ξ1 =?

f ξ2).

• Σ0 = {X → ξ1, Y → f(X1, . . . , Xn)} for some (ξ1 `? u1) ∈ K(Cei ) and f/n ∈ Fc with
X1:k, . . . ,Xn:k fresh and for all (∀S.ζ1 =?

f ζ2 ⇐ ϕ) ∈ F(Cei ), ζ1 = ξ1 implies root(ζ2) 6= f.

where k = |Φ(Ce1)| and ψ = ∀{X,Y, z}.(X =?
f Y ) ⇐ X `? z ∧ Y `? z with X:k, Y :k, z fresh

variables.

Note that we consider a generic equality formula ψ = ∀{X,Y, z}.(X =?
f Y ) ⇐ X `?

z ∧ Y `? z modeling that X and Y must deduce the same term. Since a recipe consequence
of K can either be coming from an deduction fact in K or be a recipe headed by a constructor
function symbol, we consider all cases. That is, in ψ, we instantiate X by ξ1 and we instantiate
Y by either ξ2 where ξ2 `? u2 is another deduction facts in K or by f(X1, . . . , Xn) where f
is a constructor function symbol and X1, . . . , Xn are fresh. Once again, the conditions ”for
all (∀S.H ⇐ ϕ) ∈ F(Cei ), H 6= (ξ1 =?

f ξ2)” and ”for all (∀S.ζ1 =?
f ζ2 ⇐ ϕ) ∈ F(Cei ), ζ1 = ξ1

implies root(ζ2) 6= f” are for termination purpose and ensure that we only consider a minimum
number of equality formula.

14 Termination and size

We need to be able to bound the size of the most general solutions of the constraint systems
we obtain in the partition tree. In this section, we will describe and explain the measure
on sets of extended symbolic processes that we use to prove termination of the algorithm
and bound the size of most general solutions. More specifically, this section is dedicated to
the proof of Theorem 5. To avoid too many notation, we assume in this section that |R|dag
includes the arity
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14.1 Bounding the size of most general solutions

In Theorem 5, we aim to bound the size of the most general unifier of the nodes n in the
partition tree, |Σ|dag with Σ ∈ mgs(n). As explained in Section 8, we build the partition
tree from the root to leaves. For each node, we build it children by first apply the extended
symbolic transition rules in 12 and second by applying as long as we can the simplification
and case distinction rules. When no more of the latter rules are applicable, the resulting set
of extended symbolic processes formed the children of the node. This sequence of operation
is repeated until no more extended symbolic transition are applicable.

To bound the size of the most general solutions, we rely on the fact that when no more
simplification and case distinction rules are applicable on a set of symbolic processes S, the
most general solution of an extended constraint system Ce in S is in fact mgu(E2(Ce)|=)
(This property is proven in Appendix). Therefore, to bound the size of the most gen-
eral solutions of the node of the partition tree, it suffices to bound |mgu(E2(Ce)|=)|dag, i.e.
|st(img(mgu(E2(Ce)|=)))|.

In order to show this bound, we need to introduce some notations. Given an extended
constraint system Ce = (Φ,D,E1,E2,K,F), we will denote:

• µi(Ce) = mgu(Ei|=) for i ∈ {1, 2}

• PT (Ce) = st(Φµ1(Ce)) ∪ st1(Kµ1(Ce)) ∪ st1(Dµ1(Ce)) ∪ st(img(µ1(Ce))

• R(Ce) = st(img(µ2(Ce))) ∪ vars2(D) ∪ st2(Kµ2(Ce))

• stc(Ce) = stc(img(µ2(Ce)),Kµ2(Ce) ∪ D) ∪ vars2(D)

Intuitively, µi(Ce) are the most general solutions of all the equalities in the constraint systems,
PT (Ce) is the set of protocol subterms in the constraint system, R(Ce) is the set of recipe
subterms in the constraint system, and finally stc(Ce) represents the consequential subterms
of the constraint system. We will write µ1, µ2, PT, . . . instead of µ1(Ce), µ2(Ce), PT (Ce) when
the extended constraint system is clear from the context.

Note that R(Ce) includes st(img(mgu(E2(Ce)|=))). Therefore, we directly obtain that
|R(Ce)| ≥ |st(img(mgu(E2(Ce)|=)))|, i.e. |R(Ce)| ≥ |mgu(E2(Ce)|=)|dag. Thus, instead of
directly bounding |mgu(E2(Ce)|=)|dag, we will bound |R(Ce)|. We focus on the latter as it is
easier to describe its evolution by application of the different rules.

14.1.1 Bounding the size of R(Ce) by application of a rule.

Let us now consider each rule and determine how R(Ce) evolves.

• Symbolic rules: Only the rules e-In and e-Out increases the size of R(Ce) by adding
at most two new second order variables.

• Simplification rules: Only the rule 20 may increase the size of R(Ce). Indeed, in such a
rule, we add a deduction fact from F in K for each extended constraint systems in the
set.

• Case distinction rules: Every case distinction rules split one set of extended symbolic
processes in two. One of this set (that we will call the positive set) is obtained by
applying a most general unifier on each extended constraint systems in the set. The
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other set (that we will call the negative set) is obtained by adding recipe disequations in
all extended constraint systems on the set. Note that in the negative set, R(Ce) remains
unchanged for all extended constraint systems in this set. Therefore, we will focus on
the positive set.

In order to bound the size of R(Ce), we will show that:

P1: R(Ce∅) = ∅ (trivial since the extended constraint is empty)

P2: We can bound the increase of |R(Ce)| by the rule 20 and by the case distinction rules
in the positive set by a polynomial in |P |dag + |Q|dag + |R|dag + |F|.

P3: An extended symbolic process in the partition tree is obtained by at most N applications
of the rule 20 and case distinction rules in the positive set where N is an exponential
in |P |dag + |Q|dag + |R|dag + |F|.

With this three properties, we can trivially derived that for all extended constraint systems
Ce in all extended symbolic processes obtained during the procedure, |R(Ce)| is bound by an
exponential in |P |dag + |Q|dag + |R|dag + |F|, which conclude the proof of Theorem 5.

The remaining of this section is dedicated to the proof of the second and third properties.

14.1.2 Bounding the increase of R(Ce)

When rules 8 to 10 are applied on a constraint system Ce they do not introduce new variables
and decrease the number of symbols in D(Ce). These two observations would be enough
to bound the size of all Σ ∈ mgs(Ce). However, our case distinction rules apply these
substitutions on other constraint systems which may introduce new variables. Therefore,
a measure based on the number of variables is insufficient for sets of extended symbolic
processes and we rather use the protocol subterms not already deduced by a recipe in E2, K
and D:

M(Ce) = {t ∈ PT | t 6∈ X 1 ∧ ∀ξ ∈ stc(Ce) \ X 2.(ξ, t) 6∈ Conseq(Kµ1 ∪ Dµ1)}

Consider first the simplification rule 11 and the ones from Figure 11. They typically apply
protocol term substitutions on the constraint system (they also effect recipe disequations
that are irrelevant in M(Ce)). Note that the applied substitution is always generated from
terms already in the constraint system. As such µ1(Ce↓) = µ1(Ce) and so Φ(Ce↓)µ1(Ce↓) =
Φ(Ce)µ1(Ce), K(Ce↓)µ1(Ce↓) = K(Ce)µ1(Ce) and D(Ce↓)µ1(Ce↓) = D(Ce)µ1(Ce). Thus, we
directly obtain that |M(Ce↓)| ≤ |M(Ce)|.

Let us now look at the rules 8, 9 and 10 and let us consider Ce Σ−→ C′e. The rule 8 does not
modify the protocol terms of the constraint systems by apply a recipe substitution. However,
we show an invariant on the constraint systems that any ξ, ζ ∈ stc(Ce) are consequence of
K∪D as well as any of their subterms (see Definition 34 in Appendix). Thus, we deduce from
the definition of stc(Ce) that stc(Ce)Σ ⊆ stc(C′e). To conclude that |M(C′e)| ≤ |M(Ce)|, we
rely on the following lemma:

Lemma 14. Let S, S′ be two sets of solved deduction facts. Let ϕ = {Xi `? ui}ni=1 such
that all Xi are pairwise distinct. For all Σ, σ, for all (ξ, t) ∈ Conseq(S ∪ ϕ), if for all
i ∈ {1, . . . , n}, (XiΣ, uiσ) ∈ Conseq(SΣσ ∪ S′) then (ξΣ, tσ) ∈ Conseq(SΣσ ∪ S′).
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Typically, this lemma (proven in Appendix) indicates that the notion of consequence is
stable by application of recipe and protocol substitutions (under some conditions). In other
words, if (ξ, t) ∈ Conseq(K(Ce)µ1(Ce)∪D(Ce)µ1(Ce)) then (ξΣ, t) ∈ Conseq(K(C′e)µ1(C′e)∪
D(C′e)µ1(C′e)). Since stc(Ce)Σ ⊆ stc(C′e), we conclude that |M(C′e)| ≤ |M(Ce)|.

By applying the same reasonning for the rule 10, we can also show thatM(C ′e) ≤M(Ce).
However, we can even show that this inequality is strict. Indeed, using the same the nota-
tion in the rule 10, this rule is only applied if Ce = Ce↓ and for all ξ ∈ stc(Ce) \ {X},
(ξ, u) 6∈ Conseq(K ∪ D). Note that Ce = Ce↓ implies that Kµ1 = K and Dµ1 = D.
Moreover, it also implies that u ∈ MCe. However, in C′e, we have that (ξ, uµ1(C′e)) ∈
Conseq(K(C′e)µ1(C′e) ∪ D(C′e)µ1(C′e)). Moreover, we show another invariant on the con-
straint system (see Definition 34 in Appendix) that ensures us that X ∈ stc(Ce) and so
ξ ∈ stc(C′e). Hence, we obtain that uµ1(C′e) 6∈ M(C′e) allowing us to conclude thatM(C ′e) <
M(Ce). By applying the same reasoning, we can also show thatM(C ′e) <M(Ce) when the
rule 9 is applied.

Let us now look at the evolution of R(Ce) when applying all these rules: The simplification
rules from Figure 11 only affects the recipe disequations which does not influence R(Ce); the
rule 11 does not modify the recipes of the constraint system. Rules 8 and 10 apply a recipe
substitution Σ on the constraint system where Σ = mgu(ξ, ζ) with ξ, ζ ∈ R(Ce). Thus,
|R(C′e)| ≤ |R(Ce)|. Finally, the only rule that increases R(Ce) is the rule 9 since it generates
n fresh variables X1, . . . , Xn where n is the arity of the symbol f.

Since we proved that |M(C ′e)| < |M(Ce)| when the rule 9 is applied and |M(Ce)| never
increase for any other rules, we conclude that:

for all Σ ∈ mgs(Ce), |R(Ce:Σ)| ≤ |R(Ce)|+ |F| × (|M(Ce)| − |M(Ce:Σ)|) (25)

Note that as we are only interested of the complexity class of the problem, we will over
approximate the bounds. As such, we over approximate the maximal arity of the signature
by |F|.

Recall that the case distinction rule Sat always a most general solution of one of the
extended constraint systems to all the extended symbolic processes in the positive set. Thus,
the equation 25 describes how R(Ce) increases for each application of the rule Sat. By
bounding |M(Ce)| by a polynomial in |P |dag + |Q|dag + |R|dag + |F|, we would prove the
property P2 for the rule Sat.

Evolution and bound of |M(Ce)|. We showed that for all Σ ∈ mgs(Ce), |M(Ce:Σ)| ≤
|M(Ce)|. In fact we can generalize this property to a more general set of substitution Σ:

Definition 28. Let Ce be an extended constraint system. Let Σ be a second-order substitution.
We say that Σ ∈ CompSub(Ce) if dom(Σ) ⊆ vars2(D(Ce)) and for all X ∈ dom(Σ), XΣ ∈
Conseq(K(Ce) ∪ D′ ∪DΣ) where D′ = {X `? u ∈ D(Ce) | X 6∈ dom(Σ)} and DΣ = {X `? x |
x fresh and X ∈ vars2(Σ) \ vars2(Ce)}.

Intuitively, CompSub(Ce) represents the recipe substitutions Σ that can be applied be
applied to the constraint system Ce, i.e. Ce:Σ, and such that the recipes in the of Σ would be
consequence of Ce:Σ. Note that mgs(Ce) ⊆ CompSub(Ce).

By applying Lemma 14, we can show that:

for all Σ ∈ CompSub(Ce), |M(Ce:Σ)| ≤ |M(Ce)| (26)
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Note that in a set of symbolic processes two extended constraint systems Ce1, Ce2 always have
the same recipe structure, i.e. |Φ(Ce1)| = |Φ(Ce2)|, vars2(Ce1) = vars2(Ce2) and {ξ | (ξ `? u) ∈
K(Ce1)} = {ξ | (ξ `? u) ∈ K(Ce2)}. Thus, we deduce that CompSub(Ce1) = CompSub(Ce2).
Therefore, we can conclude that for any simplification and case distinction rules, |M(Ce)|
never increase for all extended constraint systems in a set of extended symbolic processes.

Let us now bound |M(Ce)|. In order to do so we explore the relation between C and Ce
in an extended symbolic process (P, C, Ce). Recall that in all rules of the extended symbolic
semantics (figure 12), we always add the same equations, disequations or deduction fact in
C and Ce. Thus, if we see C as an extended constraint system with K(C) = F(C) = ∅ and
E2(C) = ∅ then we obtain that M(Ce) increases at most as much as M(C) when applying
a symbolic extended rules. Combining with the fact that C is always left untouched by
simplification and case distinction rules, and that M(Ce) never increase by these rules, we
obtain:

for all (P, C, Ce) in a set of extended symbolic processes, |M(Ce)| ≤ |M(C)| (27)

This relation is very useful as |M(C)| can easily be bound by a polynomial in |P |dag +
|Q|dag + |R|dag. Indeed, each symbolic rule add protocol terms from the process P and Q,
and in the case of the rule e-In and e-Out also at at most 1 fresh first order variables. This
property is formalise in this simple lemma:

Lemma 15. For all ({{P}}, C∅)
tr
=⇒s (P ′, C′), there exists S = {ti =? ui}ni=1 such that:

• for all i ∈ {1, . . . , n}, ti, ui ∈ st(P ) ∪ {yi}|tr|i=1

• µ1(C′) ∈ mguR(S)

Proof. This lemma is proved by induction on the number of transition in ({{P}}, C∅)
tr
=⇒s

(P ′, C′) and is direct case distinction on the symbolic rule applied.

Moreover, by adapting the classical algorithm for computing most general unifier, we can
show that for all σ ∈ mguR(S), |st(σ)| ≤ |st(S)| + |R|dag × |{t ∈ st(S) | root(t) ∈ Fd}|. By
combining this property with lemma 15 and with the fact that an extended symbolic process
is obtained by at most max(|P |dag, |Q|dag) application of symbolic rules, we conclude that for
all extended symbolic processes (P, C, Ce),

|M(Ce)| ≤ |M(C)| ≤ 2(|P |dag + |Q|dag)× (|R|dag + 1) (28)

Combining this equation with equation 25, we obtain that:

for all Σ ∈ mgs(Ce), |R(Ce:Σ| ≤ |R(Ce)|+ 2(|P |dag + |Q|dag)× |F| × (|R|dag + 1) (29)

14.1.3 Most general solutions and formulas

Equation 29 allows us to bound the increase of |R(Ce)| every time the rule Sat is applied in
the case (a) (see Section 13.1). However for the other cases and the rules Rew and Equality,
we compute and apply most general unifier of an extended constraint system combined with
a deduction or equality formula, i.e. Σ ∈ mgs(Ce|ψ) for some formula ψ, or with a protocol
disequation.
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Let us focus on the case of the rule Rew (the case of the rule Equality follows the same
logic). Note that equation 25 can be instantiated with Ce|ψ as follows:

for all Σ ∈ mgs(Ce|ψ), |R(Ce|ψ:Σ)| ≤ |R(Ce|ψ)|+ |F| × (|M(Ce|ψ)| − |M(Ce|ψ:Σ)|) (30)

However in the rule Rew, the formula ψ is in fact Σ0:(ψ0, Cei ) with ψ0 ∈ RewF(ξ, `→ r, p) and
` → r ∈ R. By definition of RewF(ξ, ` → r, p), we obtain that |st2(ψ0)| ≤ |R|dag × |F| and
|st1(ψ0)| ≤ |R|dag(1+ |F|). Hence, |M(Cei |ψ0:(Σ0,Cei ))| ≤ |M(Cei )|+ |R|dag(1+ |F|) and |R(Cei )∪
st2(ψ0:(Σ0, Cei ))| ≤ |R(Cei )|+ |R|dag×|F|. Finally, notice that |R(Cei :Σ)| ≤ |R(Cei |ψ0:(Σ0,Cei ):Σ)|.
Thus we deduce the following statement:

for all Σ ∈ mgs(Ce|Σ0:(ψ0,Cei )), |R(Cei :Σ)| ≤ |R(Cei )|+ |F||M(Ce)|+ |R|dag|F|(2 + |F|) (31)

Since we already bound |M(Ce)| by 2(|P |dag + |Q|dag)× (|R|dag + 1), we conclude once again
that the increase of R(Ce) is bound by a polynomial.

Finally, note that once a formula is created and added into F, the only modification on
its recipes is the application of substitution during the application of other rules. However,
in such a case, we can easily show the following result:

Lemma 16. Let Ce be an extended constraint system. Let ψ ∈ F(Ce). Let Σ ∈ CompSub(Ce).
For all k ∈ N, it |R(Ce) ∪ st2(ψ)| ≤ |R(Ce)|+ k then |R(Ce:Σ) ∪ st2(ψΣ)| ≤ |R(Ce:Σ)|+ k.

Intuitively, this lemma allows us to show that whenever the simplification rule 20 is ap-
plied, i.e., whenever a deduction fact ψ ∈ F(Ce) is added to K(Ce), the increase of R(Ce) can di-
rectly characterized at the time ψ was first created. This allows us to deduce |R(Ce)∪st2(ψ)| ≤
|R(Ce)|+ |R|dag|F| and to conclude the proof of Property P2.

14.2 Bounding the number of rules

Each case distinction and simplification rule replaces a set of extended symbolic processes
by one or two new sets of extended symbolic processes, leaving all the other sets unchanged.
Thus, in a derivation S →∗ S ′ and given a set S ∈ S ′, we are in fact interested to measure
the number of applications of rules that were specifically needed to obtain S. To do so, we
consider a measure on sets of extended symbolic processes {(Pi, Ci, Cei )}ni=1 and we show that
this measure strictly decreases by application of any rules (including the symbolic transition
rules). This measure is in fact a 10-tuple of integers where each element focuses on a specific
part of the set of extended symbolic processes and we consider the lexicographic order on
tuples. In the rest of this section, we will describe each element of this measure and how to
bound them.

First element: size of the process. As first element of the measure, we compute a
maximum on the sizes of the processes in the multisets Pi, i.e. max(

∑
R∈Pi |R|dag | i = 1 . . . n).

Notice that this stays unchanged for any simplification or case distinction rules but strictly
decreases when applying the extended symbolic transitions. Moreover, since the size of a
process consider the explicit tree structure, we have that this first element of the tuple is
bounded by the size of the initial processes P and Q.
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Second element: Number of constraint systems. The second element of the measure
considers the number of extended symbolic processes in the set, i.e. n, that may increase only
when applying a symbolic transition but these rules are already covered by the first element
of the measure due to the lexicographic order on tuples. Note that n strictly decreases when
applying the simplification rules 18 and 19. Moreover, it also strictly decrease when the rule
Sat is applied with the case (c) of its application conditions. In such a case, we consider
a disequations ψ and Σ ∈ mgs(Cej |ψ). Thus, Σ represents the solutions of Cej that will not
satisfy ψ. Hence, in the symbolic process (Pj , Cj ,Σ:Cej ), the extended constraint system Σ:Cej
will be reduced to ⊥ by the simplification rules, leading to an application of rule 18.

Intuitively, n corresponds to the number of symbolic transitions possible from P and Q for
a given symbolic trace. Hence, we can bound n by (|P |dag|R|dag|)|P |dag + (|Q|dag|R|dag|)|Q|dag .
Notice that the part |R||P |dagdag is due to the computation of the most general unifiers modulo
R in the symbolic transitions. Moreover, notice that this bound is exponential in the size of
the inputs P,Q and R.

Third element: Number of terms not consequence. Given C an extended symbolic
constraint system, let us denote setK(C) the following set:

{t ∈ st1(Φ(C)) ∪ st1(D(C)) | t 6∈ Conseq(K(C) ∪ D(C))}

In an extended symbolic process (Pi, Ci, Cei ) with i ∈ {1, . . . , n}, the set setK(Cei ) represents
the terms in the constraint systems that are not consequence of K(Cei ) and D(Cei ). Typically,
it corresponds to the terms that are not deducible by the attacker but could potentially be. In
fact, we can show that when the simplification rule 20 is applied, i.e. when a deduction fact is
added to K(Cei ), the head protocol term of this deduction fact is necessarily a subterm of the
frame (thanks to the fact that we only consider subterm rewriting systems). Moreover, since
by the application conditions of the simplification rule, we have that the head protocol term
is not already consequence, the size of setK(Cei ) will strictly decrease. Finally, since all case
distinction rules consist of apply substitutions Σ whose sub-recipe are all consequence (since
they are in fact most general solutions of the constraint systems), |setK(Cei )| never increase
by application of any case distinction rules.

Finally, with the same arguments for showingM(Cei ) ≤M(Ci), we can show that |setK(Cei )|
is bounded byM(Ci) and so |setK(Cei )| ≤ 2(|P |dag + |Q|dag)× (|R|dag + 1). Therefore, as third
element, we consider min(|setK(Cei )| | i = 1 . . . n) which is bounded by 2(|P |dag + |Q|dag) ×
(|R|dag + 1).

Fourth element: Number of unsolved extended constraint systems. An extended
constraint system C is unsolved when the deduction facts in D(C) do not have pairwise distinct
variables as right hand term. However, given Σ ∈ mgs(C), the application of Σ on C, i.e.
Σ:C, gives a solved extended constraint system (this property can be obtained in fact directly
from the definition of most general solutions). Therefore, when applying the rule Sat with
the case (a) of its application conditions, we directly obtain that the number of unsolved
extended constraint systems strictly decrease.

Note that we trivially deduce that the number of unsolved systems is bounded by n and
so the fourth element is bounded by (|P |dag|R|dag|)|P |dag + (|Q|dag|R|dag|)|Q|dag .
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Fifth element: Application of the rule REW. The fifth element represents the number
of application of the rule Rew that is still possible. Typically, we consider all the parameters of
the rule Rew (the deduction facts from K, the rewrite rule, etc) on which the rule Rew would
be applied with a most general solutions that does not already corresponds to a deduction
fact in F. To define this number, we consider the following set setRew(Ce).

Definition 29. Let Ce be an extended symbolic process. We denote setRew(Ce) the set of
tuples (ψ, `→ r, p, ψ0,Σ) that satisfies all the application conditions of the rule Rew.

Obviously, |setRew(Ce)| strictly decrease when applying the rule Rew. For the case dis-
tinction rules, i.e. Sat and Equality, do not increase |setRew(Ce)|. Indeed consider a
deduction formula ψ in F(Ce) obtained by application of the rule Rew, i.e. corresponding
to some parameters (ψ, ` → r, p, ψ0,Σ). Now assume that due to the application of the rule
Sat or Equality, we apply a substitution Σ′ on the constraint system Ce. In such a case,
the formula ψΣ′ ∈ F(Ce:Σ′) would in fact correspond to the application of the rule Rew with
parameters (ψΣ′, ` → r, p, ψ0,ΣΣ′). Note that |setRew(Ce)| may increase by application of
rule 20 since |K(Ce)| will increase. However, this rule is already covered by the third element
of the measure.

Bounding the size of |setRew(Ce)| can easily be done: The number of ψ ∈ K possible is
bounded by |K|, itself bounded by |setK(Ce)| (see the explanation of the third element). The
number of rewrite rules, position p and ψ0 ∈ RewF(ξ, ` → r, p) only depends on the rewrite

systems and can be bounded by |R||R|dagdag . Note that the exponential comes mainly from the
number of possible positions in `. We already know that the number of most general solutions
is bounded by (K(C)|+ 1)M(Ce).

Since rule Rew can be triggered by any extended constraint systems in {(Pi, Ci, Cei )}ni=1,
we consider

∑n
i=1 |setRew(Cei )| as fifth element of the measure. Combining all the previous

results, we obtain the following result:∑n
i=1 |setRew(Cei )| ≤ ((|P |dag|R|dag|)|P |dag + (|Q|dag|R|dag|)|Q|dag)× |R|

|R|dag
dag ×(

(|P |dag + |Q|dag)(1 + |R|dag)
)(|P |dag+|Q|dag)(1+|R|dag)+1

Sixth element: Number of unsolved deduction formulas. We say that a deduction
formulas is unsolved when it is not a deduction fact. When we apply the rule Rew, we
potentially add multiple unsolved deduction formulas and no other rule can increase the
number of deduction formulas. Moreover, when we apply the rule Sat with the case (b)
of its application conditions on deduction formulas, we have an unsolved deduction formula
ψ ∈ F(Cej ) and Σ ∈ mgs(Cej |T 2

ψ
). Hence, Σ corresponds to the solutions of Cej that trivially

satisfy the hypotheses of ψ. Thus when applying Σ on Cej , i.e. Cej :Σ, the formula ψΣ will
becomes solved. This allows us to deduce that the number of unsolved deduction formulas will
strictly decrease by application of the rule Sat with the case (b) of its application conditions.

We therefore consider |{ψ ∈ F(Cei ) | i ∈ {1, . . . , n} ∧ ψ is an unsolved deduction formula}|
as sixth element of the measure. To bound this number, we need to recall that we always
apply the case distinction rules with the following priority order: Sat ¡ Equality ¡ Rew.
Thus, when we apply a rule Rew, there is no unsolved deduction formula in any of the
extended constraint systems (otherwise we should have applied the rule Sat). It means to
the sixth element of the measure is bounded by the number of deduction formula produced
by one instance of Rew. By definition, we know that |RewF(ξ, `→ r, p)| ≤ |R| (one formula
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per rewrite rule). Thus, the rule Rew generates at most |R| × n deduction formula which is
bounded by |R|dag ×

(
(|P |dag|R|dag|)|P |dag + (|Q|dag|R|dag|)|Q|dag

)
.

Seventh element: Application of the rule EQ. Similarly to the fifth element that
corresponds to the number of application of the rule Rew, the seventh element of the measure
will considered the maximal number of remaining application of the rule Equality.

The application conditions stipulate that the rule can be applied either (a) on two deduc-
tion facts of K(Cei ), or (b) on one deduction fact of K(Cei ) in combination with a construction
function symbol.

Note that even though the rule also consider the existence of a most general solution
Σ ∈ mgs(Cei |ψ:(Σ0,Cei )), the number of application of the rule Equality will not depend on
the number of possible most general solutions. Indeed, consider the case (a) where the rule
is applied on two deduction fact (ξ1 `? u1), (ξ2 `? u2) ∈ K(Cei ). Thus, an equality formula
with ξ1Σ =?

f ξ2Σ as head will be added in F(Cei :Σ). However, in the application conditions

of the rule, we also require that for all (∀S.H ⇐ ϕ) ∈ F(Cei ), H 6= (ξ1 =?
f ξ2). Thus, a new

application of the rule Equality on Cei :Σ with the same (up to instantiation of Σ) deductions
facts from K(Cei :Σ) will be prevented.

The same situation occurs in case (b) with the condition for all (∀S.ζ1 =?
f ζ2 ⇐ ϕ) ∈ F(Cei ),

ζ1 = ξ1 implies root(ζ2) 6= f.
We therefore conclude that the rule Equality can be applied only once per pair of

deduction facts in K and once per deduction fact in K and function symbol in Fc.

Definition 30. Let Ce be an extended symbolic process. We denote setEq(Ce) the set of pairs
(ψ,ψ′) ∈ K(Ce)2 and pairs (ψ, f) ∈ K × Fc that satisfy all the application conditions of the
rule Equality.

We therefore we consider
∑n

i=1 |setEq(Cei )| as seventh element of the measure and we obtain
the following result:∑n

i=1 |setEq(Cei )| ≤ ((|P |dag|R|dag|)|P |dag + (|Q|dag|R|dag|)|Q|dag)×
2|R|dag(|P |dag + |Q|dag)2(1 + |R|dag)2

Eighth element: Number of unsolved equality formulas. Unsolved equality formulas
can be generated by two rules: the case distinction rule Equality or the simplification rule 21.
However, once again because of the priority order Sat < Equality < Rew, the two rules
cannot be triggered simultaneously and the rule Equality is only triggered when there is
no unsolved equality formulas. Note that due to the condition ∀i.∀(∀S.ζ1 =?

f ζ2 ⇐ ϕ) ∈ Fi,
ζ1 6= ξ or ζ2 6= ξ in rule 21, two instances of the rule 21 with different recipes ζ (e.g. if u1 can
be deducible with two different recipes) cannot be applied sequentially. Thus, at any given
moment, there is at most one unsolved equality formula per extended constraint system Cei ,
for all i ∈ {1, . . . , n}.

We therefore consider |{ψ ∈ F(Cei ) | i ∈ {1, . . . , n} ∧ ψ is an unsolved equality formula}|
as eighth element of the measure which is bounded by n and so by (|P |dag|R|dag|)|P |dag +
(|Q|dag|R|dag|)|Q|dag .

Finally, notice that when we apply the rule Sat with the case (b) of its application condi-
tions on equality formulas, |{ψ ∈ F(Cei ) | i ∈ {1, . . . , n} ∧ ψ is an unsolved equality formula}|
strictly decreases.
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Tenth element: Remaining most general solutions. So far, every time we showed
that one of the previous element of the measure (strictly) decrease by application of a case
distinction rule, we always focused on the set of extended symbolic processes corresponding
to the application of the most general solution Σ (e.g. the set {(Pi, Ci, Cei :Σ)}ni=1 for the rule
Sat). This is due to the fact that the other set of extended symbolic process generated by the
rule only add recipe disequations, i.e. {(Pi, Ci, Cei [E2 ∧ ¬Σ])}i=1. These recipe disequations
never increase any of the previous elements of the measures but strictly decreases the number
of most general solutions we can calculate for the same instance of the rule. For example, if
Σ ∈ mgs(Ce) then |mgsCe| > |mgs(Ce[E2 ∧ ¬Σ])|. Hence, by considering as tenth element of
the measure the number of most general solutions available for any possible instance of a rule
applicable on {(Pi, Ci, Cei )}ni=1, we ensure that the measure strictly decrease when considering
the set {(Pi, Ci, Cei [E2 ∧ ¬Σ])}i=1.

Note however that it is unnecessary to bound this tenth element. We only require it to
be finite for termination purposes, which is the case. Indeed, recall that we aim to bound
the number of time a most general solution is applied in order to bound |R(Cei )|. Since this
tenth element of the measure focus on the parts of the rules that do not apply most general
solution, it does not impact the bound of |R(Cei )|.

15 Implementation

Building on the previous section we have implemented a prototype in OCaml, called Deepsec
(DEciding Equivalence Properties in SECurity protocols), for verifying trace equivalence. The
tool’s specification language extends the grammar presented in section 2.2: in particular, we
define a non-deterministic choice operator P + Q, a let operator for variable assignment
let x = u in P else Q, as well as bounded replication !nP defining n copies of P in par-
allel. These additional primitives are only here for modelling convinience—and the native
integration allowed specific optimisations compared to encoding within the initial calculus.
The syntax and structure of Deepsec’s input files are similar to the ones of the widely used
ProVerif [BSC16] tool. We hope this will make it easier for new users to discover and handle
our tool.

Partial order reductions The tool also implements partial order reductions (POR), an
optimisation technique for protocol analysis developed by Baelde et al. [BDH15]. The basic
idea is to discard part of the state space that is redundant. This optimisation is sound when
processes are action determinate, as defined in [BDH15]. Assigning a different channel name
to each parallel process is a simple, syntactic way to ensure this property although this is not
always possible—typically when looking at anonymity or unlinkability properties. In practice,
Deepsec automatically detects action-determinate processes and activates the POR, which
drastically reduces the number of symbolic executions that need be considered.

Distributing the computation The main task of Deepsec is to generate a partition tree.
This task can be distributed: computing a given node of the tree can be done independently
of its sibling nodes. However, some engineering is needed to avoid heavy communication
overhead due to task scheduling. Indeed, the partition tree is indeed not a balanced tree and
it is impossible to know which branches will be larger than others. Hence, in practice we
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Protocol (# of roles) Akiss APTE SPEC Sat-Eq DeepSec

S
tr

o
n

g
se

cr
ec

y

Denning-

Sacco

3 3 <1s 3 <1s 3 11s 3 <1s 3 <1s

6 3 <1s 3 1s OM 3 <1s 3 <1s

7 3 6s 3 3s 3 <1s 3 <1s

10 OM 3 9m49 3 <1s 3 <1s

12 � 3 <1s 3 <1s

14 3 <1s 3 <1s

17 3 <1s 3 1s

29 3 <1s 3 6s

Wide

Mouth

Frog

3 3 <1s 3 <1s 3 5s 3 <1s 3 <1s

6 3 <1s 3 <1s 3 1h11m 3 <1s 3 <1s

7 3 <1s 3 1s OM 3 <1s 3 <1s

10 3 10s 3 3m35 3 <1s 3 1s

12 3 22m16s � 3 <1s 3 <1s

14 OM 3 <1s 3 <1s

17 3 <1s 3 1s

23 3 <1s 3 3s

Yahalom-

Lowe

3 3 <1s 3 <1s 3 7s 3 <1s 3 <1s

6 3 2s 3 41s OM 3 <1s 3 <1s

7 3 42s 3 34m38s 3 1s 3 <1s

10 OM � 3 1s 3 <1s

12 3 4s 3 2s

14 3 7s 3 2s

17 3 12s 3 8s

Needham-

Schroeder-

Lowe

2 3 <1s 3 <1s 3 30s

7

3 <1s

4 3 3s BUG � 3 <1s

8 OM 3 2s

12 3 21s

Otway-Rees

3 3 28s 3 2s 3 58m9s

7

3 <1s

6 OM OM � 3 <1s

7 3 <1s

10 3 3s

14 3 5m28s

3 successful verification E attack found 7 out of scope
OM out of memory/stack overflow � timeout (12 hours)

Figure 15: Benchmark results (Part 1)

do not directly compute and return the children of each node in the most straightforward
manner, but proceed in two steps:

1. We start with a breadth-first generation of the partition tree. The number of pending
nodes will gradually grow until, potentially, exceeding a threshold parameter n.

2. Each available core focuses on one of these nodes, computes the whole subtree rooted by
this node (depth-first manner), and is then assigned a new node. If at some point cores
become idle—because all nodes generated at step 1 are either completed or currently
assigned to an active core—we restart this two-step procedure on incomplete nodes.
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Protocol (# of roles) Akiss APTE SPEC Sat-Eq DeepSec

A
n

o
n
y
m

it
y

Private

Authentication

2 3 <1s 3 <1s

7 7

3 <1s

4 3 <1s 3 1s 3 <1s

6 3 21s 3 4m18s 3 <1s

8 OM � 3 1s

10 3 2s

15 3 32s

3G-AKA
4 3 1m34s 3 1h38m

7 7
3 <1s

6 OM � 3 3s

Passive

Authentication

2 3 <1s 3 <1s 3 3s

7

3 <1s

4 3 <1s 3 1s 3 25m27s 3 <1s

6 3 2m22s 3 1m26s OM 3 <1s

7 3 1h42m 3 1m40s 3 1s

9 � 3 1h55m 3 <1s

15 � 3 4s

21 3 8s

U
n

li
n

ka
b

il
it

y

3G-AKA
4 3 1m35s 3 1h23m

7 7
3 <1s

6 OM � 3 2s

Passive

Authentication

4 3 <1s 3 1s 3 25m31s

7

3 <1s

6 3 2m15s 3 1m27s OM 3 <1s

7 3 1h40m 3 1m44s 3 1s

9 � 3 2h08m 3 <1s

15 � 3 9s

21 3 15s

BAC
4 OM E 38m56s

7 7
E 1s

6 � �

V
ot

e
p

ri
va

cy

Prêt-à-Voter 6 7 7 7 7 3 2s

Helios Vanilla 6 E 47s E <1s 7 7 E <1s

Helios NR-W 6

OM 7 7 7

3 1s

Helios NR-ZKP 6 3 2s

Helios dR-W 10 3 30m24s

Helios dR-ZKP 10 3 9m26s

Helios hR-W 11 E 2s

Helios hR-ZKP 11 3 2h42m

3 successful verification E attack found 7 out of scope
OM out of memory/stack overflow � timeout (12 hours)

Figure 16: Benchmark results (Part 2)

While parallelisation is also supported by the Akiss tool, Deepsec goes one step further
as it is also able to distribute the computation through clusters of computers.

Benchmarks We performed extensive benchmarks to compare our tool against other tools
that verify equivalence properties for a bounded number of sessions: Akiss [CCCK16],
Apte [Che14], SAT-Equiv [CDD17] and Spec [TNH16]. Experiments are carried out on
Intel Xeon 3.10GHz cores, with 40Go of memory. Akiss and Deepsec use 35 cores as they
support parallelisation—unlike the others which therefore use a single core. The results are
summarised in figs. 15 and 16.
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We analysed strong secrecy, an equivalence based version of secrecy, for several classical
authentication protocols. These benchmarks are mainly used for measuring scalability when
increasing the number of sessions (figs. 15 and 16 indicate the number of roles in parallel, as
depending on the exact scenario a session may require more or less roles). The Deepsec tool
clearly outperforms Akiss, Apte, and Spec. The SAT-Equiv tool becomes more efficient,
when the number of sessions significantly increases. However, the Otway-Rees protocol can-
not be analysed by SAT-Equiv as it does not satisfy their type compliance condition and
the Needham-Schroeder-Lowe protocol is out of its scope, as SAT-Equiv does not support
asymmetric encryption.

To illustrate the broad scope of the tool we analyse unlinkability and anonymity prop-
erties for a number of other protocols: Abadi and Fournet’s anonymous authentication pro-
tocol [AF04], the AKA protocol deployed in 3G telephony networks [AMR+12], the Passive
Authentication and Basic Access Control (BAC) protocols implemented in the European
passport [For04], as well as the Prêt-à-Voter (PaV) [RS06] and several variants of the mixnet
based Helios [Adi08] voting protocols. We comment a bit more on the voting protocol exam-
ples. Relying on the reduction result of Arapinis et al. [ACK16], we know that it is sufficient
to consider three voters, two honest and one dishonest one, to conclude vote privacy for an
arbitrary number of voters. Moreover, when revoting is allowed, which is the case for Helios,
but not for PaV, we only need to consider a server which accepts seven ballots that may come
from any of the three honest voters. For the Helios protocol we consider several versions.
The vanilla Helios version, which does not allow revoting, is known to be vulnerable to a
ballot-copy attack [CS13]—the attacker simply copies the ballot of a honest voter in order
to bias the outcome. Two countermeasures have been proposed to thwart this attack: one
applies a ballot weeding procedure (W), while the other is based on a zero-knowledge proof
(ZKP) that links the identity of the voter to the ballot. When no revote (NR) is allowed
these two versions are indeed shown to be secure. When allowing revoting we consider the
case where seven ballots can be accepted [ACK16], under two different scenarios. When only
the dishonest voter revotes (dR) we can show the security of the weeding mechanism. When
however one honest voter re-votes twice (the same vote), a variant of the ballot-copy, pointed
out to us by Rønne [Røn16], is possible in the weeding version. The attacker intercepts or
delays the first honest vote, and casts this ballot in his name. The same ballot by the honest
voter is than removed through weeding. However, as the honest voter casts a second (differ-
ently randomised) ballot the tally is biased by containing an additional vote for the honest
voter’s candidate. This attack is found by Deepsec. We can show that the ZKP version
does not suffer from this attack as ballots are linked to voter identities and cannot be cast
on behalf of someone else. Besides note that, while PaV is a priori in the scope of Akiss,
it failed to produce a proof: Akiss only approximates trace equivalence of non-determinate
processes and finds a false attack here.

Finally we note that BAC, Prêt-à-Voter and Helios protocols are not action-determinate
and therefore do not benefit from the POR optimisation, which explains the much higher
verification times when increasing the sessions. Nevertheless, as exemplified by the Helios
hR-W example, attacks may be found very efficiently, as it generally does not require to
explore the entire state space.

60



16 Conclusion and future work

In this paper we have studied automated verification of equivalence properties, encompassing
both theoretical and practical aspects. We provide tight complexity results for static equiva-
lence, trace equivalence and labelled bisimilarity, summarised in fig. 1. To obtain complexity
upper bounds we propose a new decision procedure. In particular we show that deciding trace
equivalence and labelled bisimilarity for a bounded number of sessions is conexp complete
for subterm convergent destructor rewrite systems. Finally, we implement our procedure in
the Deepsec prototype. As demonstrated through an extensive benchmark (figs. 15 and 16),
our tool is broad in scope and efficient compared to other tools.

Our work opens several directions for future work. First, we wish to lift the restriction
of subterm convergent equational theories. Even though the problem becomes quickly unde-
cidable for more general rewrite theories, we plan to design a partially correct, i.e., sound,
complete, but not necessarily terminating, procedure, as the procedure underlying the Akiss
tool [CCCK16]. Second, we plan to avoid the restriction to destructor rewrite systems to
more general ones. From the complexity point of view we envision to study parametrised
complexity (taking the rewrite system, or the degree of non-determinism as a parameter).
This may increase our understanding of which parts of the input are responsible of the high
complexity, and guide further optimisations. We have seen that the POR techniques have
dramatically increased the tool’s performances on action-determinate processes. We wish to
develop similar techniques for more general classes of processes.
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[RT03] Michaël Rusinowitch and Mathieu Turuani. Protocol insecurity with a finite num-
ber of sessions, composed keys is np-complete. Theor. Comput. Sci., 299(1-3):451–
475, 2003.

[SEMM14] Sonia Santiago, Santiago Escobar, Catherine Meadows, and José Meseguer. A
formal definition of protocol indistinguishability and its verification using Maude-
NPA. In 10th International Workshop on Security and Trust Management
STM’14, volume 8743 of Lecture Notes in Computer Science, pages 162–177.
Springer, 2014.

[SMCB13] Benedikt Schmidt, Simon Meier, Cas Cremers, and David Basin. The TAMARIN
prover for the symbolic analysis of security protocols. In 25th International Con-
ference on Computer Aided Verification (CAV’13), volume 8044 of Lecture Notes
in Computer Science, pages 696–701. Springer, 2013.

[TD10] Alwen Tiu and Jeremy Dawson. Automating open bisimulation checking for the
spi-calculus. In 23rd Computer Security Foundations Symposium (CSF’10), pages
307–321. IEEE Comp. Soc. Press, 2010.

64



[TNH16] Alwen Tiu, Nam Nguyen, and Ross Horne. SPEC: an equivalence checker for
security protocols. In 14th Asian Symposium on Programming Languages and
Systems (APLAS’16), volume 10017 of Lecture Notes in Computer Science, pages
87–95. Springer, 2016.

65



Part IV

Appendix

A Proofs of Part I (lower bounds)

A.1 Advanced winning strategies

Before starting the proofs, we present some characterizations of observational (in)equivalence
in order to make the incoming proofs easier to handle. It somehow formalizes the intuition
that observational equivalence is a bisimulation game (see section 4.2).

Remark 10. The results of this section (A.1) also apply to the extended semantics of section 3.

A.1.1 For the defender

The transitions of the semantics which are deterministic and silent are not essential to equiv-
alence proofs as they do not interfere substantially with them. We introduce below a refined
proof technique to rule them out.

Definition 31 (simplification). A multiset of closed plain processes S is silent in an extended
process (P,Φ) when for all transitions (P ∪ S,Φ)

α−→c (Q,Φ′), it holds that Q = P ′ ∪ S with
(P,Φ)

α−→c (P ′,Φ′) and S silent in (P ′,Φ′). Then we define  (simplification relation) the
relation on extended processes defined by the following inference rules:

S silent in (P,Φ)

(P ∪ S,Φ) (P,Φ)
(S-sil)

c ∈ Nprv Msg(t) c /∈ names(P,Φ)

(P ∪ {{c〈t〉.P, c(x).Q}},Φ) (P ∪ {{P,Q{x 7→ t}}},Φ)
(S-comm)

A
ε−→c B by rules Null, Par, Then, Else

A B
(S-npte)

In other words, we write A  B when B is obtained from A by removing some silent
process or applying a deterministic (in the sense of the confluence lemma below) instance of
the transition relation

ε−→c. We call  pi the restriction of  to the rule (S-npte). Their

reflexive transitive closures are denoted
?
 and

?
 pi respectively as usual.

Lemma 17. If A B (by some rule ρsil of the definition of  ) and A
α−→c C (by some rule

ρc of the semantics), then either B = C and α = ε, or there exists D such that C  D (by
rule ρsil) and B

α−→c D (by rule ρc).

Proof. We make a case analysis on the rule used to obtain the reduction A B:

· case 1 : by rule (S-sil):

Then we write A = (P∪S,Φ), B = (P,Φ). By definition of silent processes, the reduction
A

α−→c C hence gives C = (P ′ ∪ S,Φ′) where (P,Φ)
α−→c (P ′,Φ′) = D and S silent in D.

In particular D gives the expected conclusion.
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· case 2 : by rule (S-comm) or (S-npte):

Then either B = C and the conclusion is immediate, or B 6= C and a quick analysis of
the rules of the semantics gives P, QB, Q′B, QC , Q′C ,Φ,Φ′ such that:

A = ({{QB, QC}} ∪ P,Φ) B = ({{Q′B, QC}} ∪ P,Φ) C = ({{QB, Q′C}} ∪ P,Φ′)

({{QB}},Φ) ({{Q′B}},Φ) ({{QC}},Φ)
α−→c ({{Q′C}},Φ′)

and we conclude by choosing D = ({{Q′B, Q′C}} ∪ P,Φ′).

Corollary 2. If A
?
 B and A

α−→c C then either B
?
 C and α = ε, or there exists D such

that C
?
 D and B

α−→c D.

Proof. By a straightforward induction on the number of steps of the reduction A
?
 B.

Corollary 3.  pi is convergent.

Proof. The termination of  pi follows from the termination of the whole calculus. As for
the local confluence (which sufficies by Newmann’s lemma), we observe that by lemma 17,
if A pi B and A pi C then either B = C, or there is D such that B  pi D and C  pi D:

in particular, B
?
 pi E and C

?
 pi E for some E ∈ {C,D}.

In particular, all extended processes A have a unique normal form w.r.t.  pi which
will be written A↓pi . This notation is lifted to multiset of processes, writing P↓pi (which is
consistent since  pi does not modify the frame). With all of this, we eventually gathered all
the ingredients to introduce our characterization of bisimilarity:

Definition 32 (bisimulation up to  ). A symmetric relation R on extended processes is
then said to be bisimulation up to  , or a bisimulation up to simplification, when:

• R ⊆ ∼;

• for all extended processes A,B such that ARB, and for all transitions A
α−→c A

′, there

exists B
α
=⇒c B

′ such that A′
?
 R

?
 B′.

Proposition 1. For all extended processes A and B, A ≈o B iff there exists a bisimulation
up to simplification R such that A

?
 R

?
 B.

Proof. The forward implication follows from the fact that ≈o is a bisimulation up to sim-
plification (by reflexivity of

?
 ). For the converse, let us consider R a bisimulation up to

 and prove that it is contained in ≈o. In order to do that, it sufficies to show that:

• ?
 R

?
 is symmetric;

• (
?
 R

?
 ) ⊆ ∼;

• for all extended processes A,B such that A
?
 R

?
 B, if A

α−→c A
′ then there exists

B
α
=⇒c B

′ such that A′
?
 R

?
 B′.

These three properties indeed justify that (
?
 R

?
 ) ⊆ ≈o by definition, hence the expected

67



conclusion as R ⊆ ?
 R

?
 by reflexivity of

?
 . Yet it appears that the first two points

directly follows from the properties of R and the reflexivity of
?
 , and we thus only need

to prove the third point. Let us therefore consider the following hypotheses and notations:

A
?
 C R D

?
 B A

α−→c A
′

and let us exhibit B′ such that B
α
=⇒c B

′ and A′
?
 R

?
 B′. Let us consider the two cases

induced by the application of corollary 2:

· case 1 : A′
?
 C and α = ε

Then we can choose B′ = B.

· case 2 : there exists C ′ such that A′
?
 C ′ and C

α−→c C
′

Consequently, since R is a bisimulation up to simplification, there isD′ such thatD
α
=⇒c D

′

and C ′
?
 R

?
 D′. Then we remark that for all extended processes B1, B2, B3:

– a transition B1  B2 with rules (S-npte) or (S-comm) implies B1
ε−→c B2;

– if B1  B2 with rule (S-sil) and B2
β−→c B3, then B1

β−→c B3.

In particular since B
?
 D

α
=⇒c D

′, we have B
α
=⇒c D

′′ ?
 D′ for some D′′. Hence the

conclusion by choosing B′ = D′′.

A.1.2 For the attacker

When taking the negation of labelled bisimilarity, we essentially obtain a set of rules for a
game whose states are pairs of processes (A,B): an attacker selects a transition and a defender
answers by selecting a equivalently-labelled sequence of transitions in the other process.

Definition 33 (labelled attack). A relation S on extended processes is called a labelled attack
when for all A,B such that ASB, it holds that:

1. either: A 6∼ B

2. or: ∃A α−→c
tr
=⇒c A

′, ∀B α.tr
==⇒c B

′, A′SB′

3. or: ∃B α−→c
tr
=⇒c B

′, ∀A α.tr
==⇒c A

′, A′SB′

Note that labelled attacks are not the direct translation of the above intuition since they
allow the attacker to choose several transitions in a row; this intuitively entails no loss of
generality since it is equivalent to the attacker selecting some transitions non-adaptatively
(i.e. independently of the answer of the defender). Here is the formal statement of correctness:

Proposition 2. For all extended processes A and B, A 6≈o B iff there exists a labelled attack
S such that ASB.

Proof. The forward implication is immediate since 6≈o is a labelled attack (we can even
choose tr = ε everytime). Let then S be a labelled attack such that ASB and let us prove
that S ⊆ 6≈o. More precisely, we prove that S ⊆ S ′ ⊆ 6≈o for some relation S ′. We will
construct S ′ in such a way that for all A,B extended processes, AS ′B entails:
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(i) either: A 6∼ B;

(ii) or: ∃A α−→c A
′, ∀B α

=⇒c B
′, A′SB′;

(iii) or: ∃B α−→c B
′, ∀A α

=⇒c A
′, A′SB′

The inclusion S ′ ⊆ 6≈o is indeed clear if this property is verified, hence the expected
conclusion provided such a relation S ′. We concretely define it as the smallest relation on
extended processes saturated by the following inference rules:

ASB

AS ′B
(Axiom)

AS ′B A
α−→c A

′ α′−→c
tr
=⇒c A

′′ ∀B α.α′.tr
===⇒c B

′′, A′′S ′B′′ B
α
=⇒c B

′

A′S ′B′
(Dec-L)

AS ′B B
α−→c B

′ α′−→c
tr
=⇒c B

′′ ∀A α.α′.tr
===⇒c A

′′, A′′S ′B′′ A
α
=⇒c A

′

A′S ′B′
(Dec-R)

In particular, note that S ⊆ S ′ thanks to the rule (Axiom). As for the two other

rules (Dec-L) and (Dec-R), they intuitively decompose sequences
α−→c

tr
=⇒c into atomic

transitions in order to switch from points 2. or 3. of definition 33 to points (ii) or (iii).
Let then A and B be two extended processes such that AS ′B. We consider a proof-tree

of AS ′B in the inference system above and perform a case analysis on the rule at its root:

· case 1 (Axiom): ASB.

As S is a labelled attack, we apply the case analysis of definition 33:

· case 1.a : A 6∼ B.

Then (i) is satisfied.

· case 1.b : there exists A
α−→c A

′ tr
=⇒c A

′′ such that A′′SB′′ for all B
α.tr
==⇒c B

′′.

In particular, keeping in mind that S ⊆ S ′ due to the rule (Axiom), we have A′′S ′B′′

for all B
α.tr
==⇒c B

′′. Let us then show that the transition A
α−→c A

′ satisfies (ii). We
therefore have to show that A′S ′B′ for all B

α
=⇒c B

′. If A′ = A′′ then the result follows

from the hypothesis. Otherwise let us write A
α−→c A

′ α′−→c
tr′
=⇒c A

′′ where α′.tr′ = tr and
the rule (Dec-L) justifies that A′S ′B′ for all B

α
=⇒c B

′.

· case 1.c : there exists B
α−→c B

′ tr
=⇒c B

′′ such that B′′SA′′ for all A
α.tr
==⇒c A

′′.

Analogous, targeting (iii) instead of (ii) and replacing (Dec-L) by (Dec-R).

· case 2 (Dec-L): there are A0, A1, A2, B0, B2, α, α′, tr, such that A0S ′B0, B0
α
=⇒c B,

A0
α−→c A

α′−→c A1
tr
=⇒c A2, and ∀ B0

α.α′.tr
===⇒c B2, A2S ′B2.

Let us show that the transition A
α′−→c A1 satisfies (ii). We therefore have to show

that A1S ′B1 for all B
α′
=⇒c B1. If A1 = A2 then the result follows from the hypothesis.
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Otherwise we write A
α′−→c A1

α′′−→c
tr′
=⇒c A2 where α′′.tr′ = tr and the rule (Dec-L) justifies

that A1S ′B1 for all B
α
=⇒c B1.

· case 3 (Dec-R): Analogous to case 2.

A.2 Correctness of the encodings (section 3)

Now we prove that the translation J·K of the extended semantics is correct (lemma 1). But
first of all, a (trivial) observation about the free variables of a translated process:

Lemma 18. For all plain processes P and all first-order substitution σ, JPσK = JP Kσ.

We will use this lemma implicitly in the remaining of this section. Besides, as we have the
inclusion of relations ≈o ⊆ ≈t, we only need to prove the observational-equivalence statement
of lemma 1. We recall that we use notations A↓pi and P↓pi to refer to normal forms w.r.t.  pi

(see corollary 3).

Proposition 3. We consider R the symmetric closure of:

{(C, JCK↓pi) | C extended process such that C = C↓pi}

R is a bisimulation up to simplification.

Proof. R is symmetric by definition and is trivially included in ∼. Let then (A,B) ∈ R
and A

α−→c A
′ and let us exhibit B′ such that B

α
=⇒c B

′ and A′RB′. We perform a case
analysis on the rule triggerring the transition A

α−→c A
′:

· case 1 (rules Null, Par, Then, Else):

This case cannot arise as A is in normal form w.r.t.  pi by definition of R.

· case 2 (rule In): α = ξ(ζ) for some ξ, ζ ∈ T (F ,Npub ∪ dom(Φ)) and:

A = (P ∪ {{u(x).P}},Φ) with Msg(u), Msg(ξΦ) and ξΦ↓ = u↓
A′ = (P ∪ {{P{x 7→ ζΦ↓}}},Φ) with Msg(ζΦ)

Then, by a case analysis on the hypothesis ARB:

· case 2.a : B = JAK↓pi
Then we can write:

B = (JPK↓pi ∪ {{u(x).JP K}},Φ)

and we conclude by remarking that B
ξ(ζ)−−→c B

′ = (JPK↓pi ∪ {{JP K{x 7→ ζΦ↓}}},Φ) and:

A′
?
 A′↓pi R JA′↓piK↓pi = JA′K↓pi = (JPK↓pi ∪ {{JP K{x 7→ ζΦ↓}}}↓pi ,Φ)

?
 B′

· case 2.b : A = JBK↓pi (and B = B↓pi)
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Note that u = ξΦ↓ cannot be one of the names introduced by the translation J·K: these
names can indeed not appear in Φ since they are chosen private and fresh and since the
semantics cannot introduce new private names. In particular we can write:

B = (Q∪ {{u(x).Q}},Φ) with JQK = P and JQK↓pi = P

and we conclude by writing B
ξ(ζ)−−→c B

′ = (Q∪ {{Q{x 7→ ζΦ↓}}},Φ) and:

A′
?
 (JQK↓pi ∪ {{JQK{x 7→ ζΦ↓}}}↓pi ,Φ) = JB′K↓pi = JB′↓piK↓pi R B′↓pi

?
 B′

· case 3 (rule Out): α = ξ〈axn〉 for some ξ,∈ T (F ,Npub ∪ dom(Φ)), axn ∈ AX and:

A = (P ∪ {{u〈t〉.P}},Φ) with Msg(u), Msg(t), Msg(ξΦ) and ξΦ↓ = u↓
A′ = (P ∪ {{P}},Φ′) where Φ′ = Φ ∪ {axn 7→ t↓} and n = |Φ|+ 1

Then, by a case analysis on the hypothesis ARB:

· case 3.a : B = JAK↓pi
Then we can write:

B = (JPK↓pi ∪ {{u〈t〉.JP K}},Φ)

and we conclude by remarking that B
ξ〈axn〉−−−−→c B

′ = (JPK↓pi ∪ {{JP K}},Φ) and:

A′
?
 A′↓pi R JA′↓piK↓pi = JA′K↓pi = (JPK↓pi ∪ {{JP K}}↓pi ,Φ)

?
 B′

· case 3.b : A = JBK↓pi (and B = B↓pi)

For the same reason as in case 2.b, we can write:

B = (Q∪ {{u〈t〉.Q}},Φ) with JQK = P and JQK↓pi = P

and we conclude by writing B
ξ〈axn〉−−−−→c B

′ = (Q∪ {{Q}},Φ) and:

A′
?
 (JQK↓pi ∪ {{JQK}}↓pi ,Φ) = JB′K↓pi = JB′↓piK↓pi R B′↓pi

?
 B′

· case 4 (rule (Comm)): α = ε and:

A = (P ∪ {{u〈t〉.P, v(x).Q}},Φ) with Msg(u), Msg(v), Msg(t) and u↓ = v↓
A′ = (P ∪ {{P,Q{x 7→ t}}},Φ)

Then, by a case analysis on the hypothesis ARB:
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· case 4.a : B = JAK↓pi
Then we can write:

B = (JPK↓pi ∪ {{u〈t〉.JP K, v(x).JQK}},Φ)

and we conclude by remarking that B
ε−→c B

′ = (JPK↓pi ∪ {{JP K, JQK{x 7→ t}}},Φ) and:

A′
?
 A′↓pi R JA′↓piK↓pi = JA′K↓pi = (JPK↓pi ∪ {{JP K↓pi , JQK{x 7→ t}↓pi}},Φ)

?
 B′

· case 4.b : A = JBK↓pi (and B = B↓pi) and a term w such that w↓ = u↓ appears in B

(syntactically)

In particular ↓u is not a fresh name introduced by the translation J·K and we can
therefore write:

B = (P ′ ∪ {{u〈t〉.P ′, v(x).Q′}},Φ) with JP ′K↓pi = P, JP ′K = P and JQ′K = Q

and we conclude by writing B
ε−→c B

′ = (P ′ ∪ {{P ′, Q′{x 7→ t}}},Φ) and:

A′
?
 (JP ′K↓pi ∪ {{JP

′K↓pi , JQ
′K{x 7→ t}↓pi}},Φ) = JB′K↓pi = JB′↓piK↓pi R B′↓pi

?
 B′

· case 4.c : A = JBK↓pi (and B = B↓pi) and there exists no term w appearing in B such

that w↓ = u↓ (syntactically)

Then u is a fresh name introduced by J·K. We consider the two disjoint cases where it
was introduced for the translation of a sum or a circuit:

• If u ∈ Nprv is a fresh name generated in order to translate a sum of B, or rephrased
more formally:

B = (Q∪ {{P ′ +Q′}},Φ)

A = (JQK↓pi ∪ {{u〈u〉, u(x).JP ′K, u(x).JQ′K}},Φ) where x ∈ X 1 but x /∈ vars(P ′, Q′)

A′ = (JQK↓pi ∪ {{JRK, u(x).JSK}},Φ) where R,S ∈ {{P ′, Q′}}, R 6= S

We let B′ = (Q∪{{R}},Φ) and remark that B
ε−→c B

′ by the rule Choice-L (if R = P ′

and S = Q′) or Choice-R (if R = Q′ and S = P ′). Besides, let us observe that the
name u does not appear in JQK↓pi , JRK nor Φ by construction of J·K and that u(x).JSK
is therefore easily seen to be silent in A′′ = (JQK↓pi ∪ {{JRK}},Φ). In particular it

entails that A′  A′′ by the rule (S-sil) which gives the conclusion:

A′  A′′
?
 (JQK↓pi ∪ {{JRK}}↓pi ,Φ) = JB′K↓pi = JB′↓piK↓pi R B′↓pi

?
 B′

• u ∈ Nprv is a fresh name generated in order to translate a Choose(x): this case can
be handle analogously to the previous one.
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• If u ∈ Nprv is a fresh name generated in order to translate a circuit of B, or formally:

B = (Q∪ {{~x← Γ(~b).P ′}},Φ)

A = (JQK↓pi ∪ {{J~x← Γ(~b).P ′K}},Φ)

We call (ci)i the private fresh names introduced by the translation J~x ← Γ(~b).P ′K,
stressing that none of them appears in JQK↓pi , JP ′K nor Φ. Here u ∈ {ci}i and we can
therefore write:

A′ = (JQK↓pi ∪ {{Q
′}},Φ) where ({{J~x← Γ(~b).P ′K}},Φ)

α−→c ({{Q′}},Φ)

If the sequence ~b contains a term which is not a message or does not reduce to
a boolean, then one easily obtain that ({{Q′}},Φ)

?
 pi (S,Φ) where S is silent in

(JQK↓pi ,Φ) (for that we assume, w.l.o.g. that each input of Γ goes through at least

one gate). Hence since {{~x← Γ(~b).P ′}} is also silent in (Q,Φ), we conclude with
B′ = (Q,Φ).
Otherwise assume that Msg(~b) and ~b↓ ⊆ B. Then one easily obtain by induction on

the number of gates of Γ that ({{Q′}},Φ)
?
 pi ({{JP ′K{~x 7→ Γ(~b)}}},Φ) and we conclude

by choosing B′ = (Q∪ {{P ′{~x 7→ Γ(~b)}}},Φ).

· case 5 (rules Choice-L, Choice-R, Choose-0, Choose-1 or Valuate):

The arguments of each of these cases are analogous to priorly-met subcases.

In particular note that A
?
 A↓pi R JA↓piK↓pi = JAK↓pi

?
 JAK for all extended processes A,

hence lemma 1.

A.3 Reductions in the pure π-calculus (section 4)

Proof of eq. (3) We prove first the correctness of our reduction for trace equivalence.

Proof.

(⇒) Suppose that A 6≈t B. By a quick case analysis, we obtain a reduction B
ε−→c

({{P (0)}}, ∅) tr
=⇒c (∅, {ax1 7→ 0)}) where tr = c(~t).c〈ax1〉 for some messages ~t, such

that for all reduction A
tr
=⇒c (C,Φ) the frames {ax1 7→ 0} and Φ are not statically

equivalent. In particular, for all ~y ⊆ B, by choosing Φ = {ax1 7→ ϕ(~t, ~y)} reachable
from A, we obtain ϕ(~t, ~y) = 0, hence the result.

(⇐) Conversely, suppose that exists exists ~x ⊆ B such that ϕ(~x, ~y) = 1 for all ~y ⊆ B.
Then the trace B

ε
=⇒c (∅, {ax1 7→ 0}) cannot be matched in A and therefore A 6≈t B.

Proof of eq. (4) Now we prove the correctness of our reduction for observational equiva-
lence, using the framework presented in appendix A.1.
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Proof.

(⇒) By contraposition, suppose that ∀x1∃y1 . . . ∀xn∃yn. ϕ(x1, . . . , xn, y1, . . . , yn) = 1. For
convinience we use a notation for subprocess extraction: is ` is a position of a process
C, then the subprocess of C at position ` (which may not be closed) is denoted by
C|`. Then if:

Ci =
n+1∏
j=i+1

(GetEnv 〈Aj〉 .Aj) |
n+1∏
j=i+1

(GetEnv 〈Bj〉 .Bj)

we define R the smallest reflexive symmetric relation on closed extended processes
such that:

1. (Ai | Ci)(−→x i−1,−→y i−1)R(Bi | Ci)(−→x i−1,−→y i−1)

if ∀xi∃yi . . . ∀xn∃yn, ϕ(~x, ~y).

2. (Ai|` | Ci)(−→x i,−→y i−1)R(Bi|` | Ci)(−→x i−1,−→y i−1)

if ` ∈ {0, 0.0} and ∃yi . . . ∀xn∃yn, ϕ(~x, ~y).

3. (Bi|0.0.1.` | Ci)(−→x i,−→y i)R(Di|0.` | Ci)(−→x i,−→y i)
if ` ∈ {ε, 0} and ∀xi+1∃yi+1 . . . ∀xn∃yn, ϕ(~x, ~y).

Then one can verify that R is a bisimulation up to  , and ARB by hypothesis,
hence the A ≈` B.

(⇐) If we suppose that ∃x1∀y1 . . . ∃xn∀yn. ϕ(x1, . . . , xn, y1, . . . , yn) = 1, then one can
define a labelled attack S such that BSA. We omit the concrete construction as it
is analogous to that of R above; all in all this gives the conclusion A 6≈` B.

A.4 Reductions in the applied π-calculus (section 5)

A.4.1 Static equivalence (theorem 3)

In this section we prove the correctness of the reduction presented in section 5.1. We refer to
the notations of this section and write:

Φ1 = {f(0, k), f(1, k)} Φ2 = {g(0, k), g(1, k)}

We proceed by double implication.

Lemma 19. If ϕ is satisfiable, Φ1 6∼ Φ2.

Proof. Let σ = {x1 7→ b1, . . . , xn 7→ tn} be a valuation satisfying ϕ. The booleans bi
are indistinctly seen as truth values or integers of {0, 1}. Let us then define the recipe
ξ = eval(axb1+1, . . . , axbn+1). We have Msg(ξΦ1) but, since σ satisfies all clauses of ϕ, ξΦ2

is irreducible. Since root(ξ) ∈ Fd, we obtain ¬Msg(ξΦ2) and hence Φ1 6∼ Φ2.

Lemma 20. If Φ1 6∼ Φ2, ϕ is satisfiable.
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Proof. By non equivalence of Φ1 and Φ2, we know that there exist recipes ξ, ζ such that

H1 either Msg(ξΦ1) and ¬Msg(ξΦ2)

H2 either ¬Msg(ξΦ1) and Msg(ξΦ2)

H3 either Msg(ξΦ1), Msg(ξΦ2), Msg(ζΦ1), Msg(ζΦ2), ξΦ1↓ = ζΦ1↓ and ξΦ2↓ 6= ζΦ2↓,

H4 or Msg(ξΦ1), Msg(ξΦ2), Msg(ζΦ1), Msg(ζΦ2), ξΦ1↓ 6= ζΦ1↓ and ξΦ2↓ = ζΦ2↓.

Let ξ0, ζ0 be such recipes such that |ξ0| + |ζ0| is minimal. Let us then prove that ϕ is
satisfiable. We proceed by case analysis on the hypothesis H1 to H4 satisfied by ξ0, ζ0.

· case 1: Msg(ξ0Φ1), ¬Msg(ξ0Φ2), and root(ξ0) ∈ Fc ∪Npub ∪ AX
It holds root(ξ0) ∈ {f, g} otherwise there would be an easy contradiction with hypoth-
esis ¬Msg(ξ0Φ2). In particular, there exists a strict subterm of ξ0 verifying H1 which
contradicts the minimality of |ξ0|+ |ζ0|.

· case 2: ¬Msg(ξΦ1), Msg(ξΦ2), and root(ξ0) ∈ Fc ∪Npub ∪ AX
Symmetric to case 1.

· case 3: Msg(ξ0Φ1), ¬Msg(ξ0Φ2), and root(ξ0) = eval

Hypothesis Msg(ξ0Φ1) yields

ξ0Φ1 = eval(f(t1, t), . . . , f(tn, t)) or ξ0Φ1 = eval(g(s1, s), . . . , g(sn, s))

for terms t1, . . . , tn, t, s1, . . . , sn, s such that there is a clause C of ϕ with vars(C) =
{xi1 , xi2 , xi3}, Msg(si1), Msg(si2), Msg(si3), {si1↓, si2↓, si3↓} ⊆ {0, 1} and the substitu-
tion {xi1 7→ si1↓, xi2 7→ si2↓, xi3 7→ si3↓} seen as a valuation of C falsifies C.

· case 3a: ξ0Φ1 = eval(f(t1, t), . . . , f(tn, t))

We write ξ0 = eval(ξ1, . . . , ξn). Several cases can arise:

· Either root(ξi) = f for all i ∈ Nn. Then there exists some i ∈ Nn and ξ a strict
subterm of ξi such that Msg(ξΦ1) and ¬Msg(ξΦ2). In particular ξ verifies H1, yielding
a contradiction with minimality of |ξ0|+ |ζ0|.
· Either root(ξi) ∈ AX for all i ∈ Nn. Let us write ξi = axbi+1. In particular, hypothesis
¬Msg(ξ0Φ2) gives that eval(g(b1, k), . . . , g(bn, k)) is irreducible. It entails there ϕ
contains no clause falsified by the valuation {x1 7→ b1, . . . xn 7→ bn}, hence ϕ is
satisfiable.

· Or root(ξi) ∈ AX and root(ξj) = f for some i, j ∈ Nn. We observe that k is not
deducible from Φ1 (i.e. there exists no recipe ζ such that Msg(ζ) and ζΦ1↓ = k). In
particular ¬Msg(ξ0Φ1), hence a contradiction.

· case 3b: ξ0Φ1 = eval(g(s1, s), . . . , g(sn, s))

We derive a contradiction. Indeed it implies ξ0 = eval(g(ξ1, ξ
′
1), . . . , g(ξn, ξ

′
n)) for recipes

ξ1, . . . , ξn, ξ′1, . . . , ξ
′
n. Then hypothesis ¬Msg(ξ0Φ2) yields different cases:

· Either there exists i ∈ Nn such that ¬Msg(ξiΦ2). Then ξi satisfies H1, yielding a
contradiction with minimality of |ξ0|+ |ζ0|.
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· Either there exists i ∈ Nn such that ¬Msg(ξ′iΦ2). Then ξ′i satisfies H1, yielding a
contradiction with minimality of |ξ0|+ |ζ0|.
· Either there exist i, j ∈ Nn such that Msg(ξ′iΦ2), Msg(ξ′jΦ2) and ξ′iΦ2↓ 6= ξ′jΦ2↓. Then
ξ′i, ξ

′
j would satisfy H3, yielding a contradiction with minimality of |ξ0|+ |ζ0|.

· Or there exist i ∈ {i1, i2, i3} such that Msg(ξiΦ2) and ξiΦ1↓ 6= ξiΦ2↓ (otherwise that
would contradict ¬Msg(ξ0Φ2)). Since ξiΦ1↓ = si ∈ {0, 1}, there is a recipe ζ ∈ {0, 1}
such that ξiΦ1↓ = ζΦ1↓ and ξiΦ2↓ 6= ζΦ2↓. In particular ξi, ζ satisfy H3, yielding a
contradiction with minimality of |ξ0|+ |ζ0|.

· case 4: ¬Msg(ξ0Φ1), Msg(ξ0Φ2), and root(ξ0) = eval

Hypothesis Msg(ξ0Φ2) yields

ξ0Φ2 = eval(f(t1, t), . . . , f(tn, t)) or ξ0Φ2 = eval(g(s1, s), . . . , g(sn, s))

for terms t1, . . . , tn, t, s1, . . . , sn, s such that there is a clause C of ϕ with vars(C) =
{xi1 , xi2 , xi3}, Msg(si1), Msg(si2), Msg(si3), {si1↓, si2↓, si3↓} ⊆ {0, 1} and the substitu-
tion {xi1 7→ si1↓, xi2 7→ si2↓, xi3 7→ si3↓} seen as a valuation of C falsifies C.

· case 4a: ξ0Φ2 = eval(f(t1, t), . . . , f(tn, t))

We derive a contradiction. Indeed it implies ξ0 = eval(f(ξ1, ξ
′
1), . . . , f(ξn, ξ

′
n)) for recipes

ξ1, . . . , ξn, ξ′1, . . . , ξ
′
n. Then hypothesis ¬Msg(ξ0Φ1) yields different cases:

· Either there exists i ∈ Nn such that ¬Msg(ξiΦ1). Then ξi satisfies H2, yielding a
contradiction with minimality of |ξ0|+ |ζ0|.
· Either there exists i ∈ Nn such that ¬Msg(ξ′iΦ1). Then ξ′i satisfies H2, yielding a

contradiction with minimality of |ξ0|+ |ζ0|.
· Or there exist i, j ∈ Nn such that Msg(ξ′iΦ1), Msg(ξ′jΦ1) and ξ′iΦ1↓ 6= ξ′jΦ1↓. Then
ξ′i, ξ

′
j would satisfy H4, yielding a contradiction with minimality of |ξ0|+ |ζ0|.

· case 4b: ξ0Φ2 = eval(g(s1, s), . . . , g(sn, s))

We write ξ0 = eval(ξ1, . . . , ξn). Several cases can arise:

· Either root(ξi) = g for all i ∈ Nn. Then there exists some i ∈ Nn and ξ a strict
subterm of ξi such that Msg(ξΦ2) and ¬Msg(ξΦ1). In particular ξ verifies H2, yielding
a contradiction with minimality of |ξ0|+ |ζ0|.
· Either root(ξi) ∈ AX for all i ∈ Nn. There is a clear contradiction with ¬Msg(ξ0Φ1).

· Or root(ξi) ∈ AX and root(ξj) = g for some i, j ∈ Nn. We observe that k is not
deducible from Φ2 (i.e. there exists no recipe ζ such that Msg(ζ) and ζΦ2↓ = k). In
particular ¬Msg(ξ0Φ2), hence a contradiction.

· case 5: Msg(ξ0Φ1), Msg(ξ0Φ2), Msg(ζ0Φ1), Msg(ζ0Φ2), ξ0Φ1↓ = ζ0Φ1↓, ξ0Φ2↓ 6= ζ0Φ2↓
We show that this case cannot arise: the fact that ξ0Φ1, ξ0Φ2, ζ0Φ1 and ζ0Φ2 are messages
will always contradict either ξ0Φ1↓ = ζ0Φ1↓ or ξ0Φ2↓ 6= ζ0Φ2↓.

· case 5a: {root(ξ0), root(ζ0)} ⊆ {0, 1} ∪ Npub ∪ AX
Then we can always derive a contradiction with ξ0Φ1↓ = ζ0Φ1↓ and ξ0Φ2↓ 6= ζ0Φ2↓.
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· case 5b: {root(ξ0), root(ζ0)} ⊆ {f, g}
If root(ξ0) 6= root(ζ0), this yields a contradiction with ξ0Φ1↓ = ζ0Φ1↓. Otherwise we can
find strict subterms of ξ0 and ζ0 satisfying H3, yielding a contradiction with minimality
of |ξ0|+ |ζ0|.
· case 5c: root(ξ0) ∈ {f, g} and root(ζ0) ∈ {0, 1} ∪ Npub (or conversely)

This yields a contradiction with ξ0Φ1↓ = ζ0Φ1↓.
· case 5d: root(ξ0) = f and root(ζ0) ∈ AX (or conversely)

Since k is not deducible from Φ1, this yields a contradiction with ξ0Φ1↓ = ζ0Φ1↓.
· case 5e: root(ξ0) = g and root(ζ0) ∈ AX (or conversely)

This yields a clear contradiction with ξ0Φ1↓ = ζ0Φ1↓.
· case 5f: root(ξ0) = eval and root(ζ0) /∈ {eval, 0} (or conversely)

This yields a contradiction with ξ0Φ1↓ = ζ0Φ1↓, since root(ξ0Φ1↓) 6= root(ζ0Φ1↓).
· case 5g: {root(ξ0), root(ζ0)} ⊆ {0, eval}

Since Msg(ξ0Φ2) and Msg(ζ0Φ2), this yields ξ0Φ2↓ = 0 = ζ0Φ2↓, in contradiction with
hypothesis ξ0Φ2↓ 6= ξ0Φ2↓.

· case 6: Msg(ξ0Φ1), Msg(ξ0Φ2), Msg(ζ0Φ1), Msg(ζ0Φ2), ξ0Φ1↓ 6= ζ0Φ1↓, ξ0Φ2↓ = ζ0Φ2↓
A contradiction can be derived symmetrically to case 5.

A.4.2 Trace and observational equivalences (lemmas 3 to 5 section 5.2)

Before concretly proving the pending lemmas, let us introduce some notations and prove
intermediary results about static equivalence. Sticking to the notations of section 5.2 (in
particular we fix a private nonce s ∈ Nprv), we define the following frames given a protocol
term t:

Φt = {ax1 7→ h(t, s), ax2 7→ h(1, s)}
ΦN
t = {ax1 7→ hN(t, s), ax2 7→ h(1, s)}

ΦB
t = {ax1 7→ hB(t, s), ax2 7→ h(1, s)}

One shall observe that the whole deal with our reduction is about which instances of these
three frames are reachable in which conditions. Hence first we prove a lemma investigating
the static equivalence between some of them:

Lemma 21. Let t be a message in normal form (t = t↓). The following properties hold:

(i) Φt ∼ Φ0 iff t 6= 1

(ii) ΦN
t ∼ Φ0 iff root(t) 6= Node

(iii) ΦB
t ∼ Φ0 iff t /∈ B

Proof. We prove the three equivalences together by double implication.

(⇒) We prove the three properties by contraposition. We naturally proceed by exhibiting
ground recipes ξ, ζ witnessing the non-static-equivalence goal:
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· (i) We assume t = 1 and we choose ξ = ax1 and ζ = ax2: the conclusion follows from
ξΦt↓ = h(1, s) = ζΦt↓ and ξΦ0↓ = h(0, s) 6= h(1, s) = ζΦ0↓.

· (ii) We assume t = Node(t1, t2) and we choose ξ = TestNode(ax1): the conclusion
follows from Msg(ξΦN

t ) and ¬Msg(ξΦN
0 ).

· (iii) We assume t ∈ {0, 1} and we choose ξ = TestBool(ax1): the conclusion follows
from Msg(ξΦB

t ) and ¬Msg(ξΦB
0 ).

(⇐) The key point is an observation about rewriting critical pairs (not specific to R):

if: u is a term;

if: σ is a substitution such that for any m ∈ img(σ) there exists no rule ` → r of
R such that m is unifiable with a subterm u ∈ st(`)−X ;

then: for any rewriting sequence uσ →? s, it holds that s = u′σ for some u →? u′

(where u′ is in normal form iff s is in normal form. In particular (uσ)↓ = (u↓)σ).

One shall note that any frame Φ investigated by the lemma (Φt when t 6= 1, ΦN
t when

root(t) 6= Node and ΦB
t when t /∈ B) verifies the second hypothesis. As a consequence,

if ξ is a ground recipe such that axioms(ξ) ⊆ dom(Φ), then Msg(ξΦ) iff Msg(ξΦ0)
(iff ∀ζ ∈ st(ξ), ζ↓ ∈ T (Fc,Npub ∪ AX )). This settles the first item of the definition
of static equivalence. As for the second item, let us fix two ground recipes ξ, ζ such
that Msg(ξΦ) and Msg(ξΦ0). Let us then prove that ξΦ↓ = ζΦ↓ iff ξΦ0↓ = ζΦ0↓ by
induction on (ξ↓, ζ↓). Note that we will intensively (and implicitly) use the fact that
ξΦ↓ = (ξ↓)Φ (same for ζ and/or Φ0).

· case 1 : ξ↓ = f(ξ1, . . . , ξn) and ζ↓ = f(ζ1, . . . , ζp) with f, g ∈ Fc.
If f = g then the result follows from induction hypothesis and if f 6= g the conclusion
is immediate (ξΦ↓ 6= ζΦ↓ and ξΦ0↓ 6= ζΦ0↓).

· case 2 : ξ↓ ∈ AX and ζ↓ ∈ AX .

If ξ = ζ the conclusion is immediate and so is it when ξ 6= ζ since Φ(ax1) 6= Φ(ax2)
and Φ0(ax1) 6= Φ0(ax2).

· case 3 : ξ↓ ∈ AX and ζ↓ = f(ζ1, . . . , ζp) with f ∈ Fc.
We argue that ξΦ↓ 6= ζΦ↓ and ξΦ0↓ 6= ζΦ0↓. Either of the two equalities being
verified would indeed imply that s ∈ {ζ2Φ, ζ2Φ0}: this is impossible as ζ2 is a ground
recipe in normal form and s ∈ Nprv (one easily shows that ζ2Φ and ζ2Φ0 are either
public names, constants, or termes of height 1 or more).

As Msg(ξΦ) and Msg(ξΦ0), the preliminary observation justifies that ξ↓ and ζ↓ func-
tion symbols are all constructor. In particular no other cases than the three above
need to be considered, which concludes the proof.

With this lemma in mind, the proofs of lemmas 3 and 4 become quite straightforward:

Lemma 3. Let x be a message which is not complete binary tree of height n with boolean
leaves. Then there exists a reduction CheckTree(x)

ε
=⇒c ({{P}}, ∅) such that ({{P}}, ∅) ≈`

(c〈h(0, s)〉. c〈h(1, s)〉, ∅).

78



Proof. Let x be a message which is not a complete binary tree of height n whose leaves are
booleans.

· case 1 : there exists a position ~π ∈ B? such that |~π| = i ∈ J0, n−1K and root(x|~π) 6= Node.

The result follows from lemma 21 after writing the following sequence of transitions:

CheckTree(x)
ε

=⇒c Choose(p1, . . . , pi). c〈hN(x|p1···pi , s)〉. c〈h(1, s)〉
ε

=⇒c c〈hN(x|~π, s)〉. c〈h(1, s)〉

· case 2 : there exists a position ~π ∈ Bn such that x|~π /∈ B.

The result follows from lemma 21 after writing the following sequence of transitions:

CheckTree(x)
ε

=⇒c Choose(p1, . . . , pn). c〈hN(x|p1···pn , s)〉. c〈h(1, s)〉
ε

=⇒c c〈hB(x|~π, s)〉. c〈h(1, s)〉

Lemma 4. Let x be a complete binary tree of height n whose leaves are booleans, and valx
be the valuation mapping the variable number i =

∑m
k=1 pk2

k−1 of JΓKϕ to x|p1···pm ∈ B.

Then, if valx does not satisfy JΓKϕ then there exists CheckSat(x)
ε

=⇒c ({{P}}, ∅) such that
({{P}}, ∅) ≈` (c〈h(0, s)〉. c〈h(1, s)〉, ∅).

Proof. Let x be a complete binary tree of height n whose leaves are booleans, that is to
say, a message such that x|~p ∈ B for all ~p ∈ Bn. Naming x0, . . . , x2n−1 the variables of
JΓKϕ in this order, valx refers to the valuation mapping xi to x|~p where ~p is the binary
representation of i (of size n with padding head 0’s).

Let us now assume that valx does not satisfy JΓKϕ. In particular there exists a clause
of JΓKϕ, say the ith clause with i =

∑m
k=1 πk2

k−1, which is falsified by valx. In particular,
if the three variable of this clause are called x1, x2, x3 with respective negation bits b1, b2,
b3, the following formula is evaluated to false (i.e. 0):

3∨
i=1

( bj = valx(xj) )

Therefore, by choosing the sequence π1, . . . , πm to instanciate the initial Choose(p1, . . . , pm)
of CheckSat(x), we obtain the following sequence of transitions, which concludes the proof:

CheckSat(x)
ε

=⇒c c〈h(0, s)〉. c〈h(1, s)〉

We finally gathered all the ingredients needed to prove the main lemma:

Lemma 5. JΓKϕ is satisfiable iff A 6≈t B iff A 6≈` B.

Proof. We name the three properties as follows: (i) JΓKϕ is satisfiable, (ii) A 6≈t B and
(iii) A 6≈o B. We reach the conclusion by the following chain of implications.
(i)⇒ (ii) : Let us consider a valuation satisfying ϕ and let t be a message such that valt is

equal to this valuation. Then since the trace B
c(t).c〈ax1〉.c〈ax2〉
==========⇒c (∅,Φ0) cannot be matched
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in A by lemma 21, we obtain B 6vt A. Hence the (ii).
(ii)⇒ (iii) : Follows from the inclusion of relations ≈o ⊆ ≈t.
¬(i) ⇒ ¬(iii) : Let us consider R the smallest reflexive symmetric relation on extended
processes such that:

1. ARB

2. A′(x)RB′(x) for all message x, where A = c(x).A′(x) and B = c(x).B′(x)

3. PiRP ′i , where:

Pi = ({{c〈ti+1〉 . . . c〈tp〉}}, {ax1 7→ t1, . . . , axi 7→ ti})
P ′i = ({{c〈t′i+1〉 . . . c〈t′p〉}}, {ax1 7→ t′1, . . . , axi 7→ t′i})

and where {ax1 7→ t1, . . . , axp 7→ tp} ∼ {ax1 7→ t′1, . . . , axp 7→ t′p}

It easily follows from lemmas 3, 4 and 21 that R is a bisimulation up to  , hence the
conclusion.

B Proofs of for the partition trees

B.1 Invariants on the sets of extended symbolic processes

We first provide some invariants of on the sets of extended symbolic processes that will always
be satisfied during the course of the procedure.

Definition 34 (Well-formed). We define the predicate Pform defined on extended constraint
systems such that for all constraint systems C = (Φ,D,E1,E2,K,F), Pform(C) holds when

• Variables in K and F : vars2(K,F) ⊆ vars2(D)

• Variables in E1: dom(mgu(E1|=)) ∩ vars1(D) = ∅, vars1(img(mgu(E1|=))) ⊆ vars1(D).

• Variables in E2: vars2(img(mgu(E2|=))) ⊆ vars2(D) and for all ξ ∈ img(mgu(E2|=)),
ξ ∈ Conseq(K ∪ D).

• Shape of K: for all (ξ `? u) ∈ K, u 6∈ X 1, u ∈ st(Φ) and for all ξ′ ∈ st(ξ), ξ′ ∈
Conseq(K ∪ D).

• Shape of F: For all ∀S.H ⇐ ϕ ∈ F(C), ϕ only contains syntactic equations as hypothesis,
i.e. no deduction fact; moreover, for all ξ ∈ sst(H), ξ ∈ Conseq(K ∪ D).

Definition 35 (Soundness). We define the predicate Psound defined on extended constraint
systems such that for all constraint systems C = (Φ,D,E1,E2,K,F), Psound(C) holds when
for all ψ ∈ K ∪ F, for all substitutions Σ, σ, if D = {ψ′ ∈ D | vars2(ψ′) ⊆ vars2(ψ)} and
(Φσ,Σ, σ) |= E1|= ∧D then (Φσ,Σ, σ) |= ψ.

The soundness property states that if the free variables of a deduction or equality formula
ψ are correctly instantiated by Σ and σ w.r.t. to D then ψΣσ is a tautology. In other word,
(Φσ,Σ, σ) models ψ.
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Definition 36 (Completeness). We define the predicate Pcomp defined on extended constraint
systems such that for all constraint systems C = (Φ,D,E1,E2,K,F), Pcomp(C) if and only if
for all ψ = (∀S.H ⇐ ϕ) ∈ F, for all substitutions Σ, σ, if (Φσ,Σ, σ) |= D ∧ E1|= ∧ E2 and
(Σ, sst2(KΣ), sst(HΣ)) is uniform in (Φσ,KΣσ) then

• if H = ξ `? u and Msg(ξΣΦσ) then there exist ψ′ = (∀S′.ξ′ `? u′ ⇐ ϕ′) ∈ F and σ′

such that dom(σ′) = vars1(S′), ψ 'r ψ
′ and (Φσ,Σ, σσ′) |= ϕ′.

• if H = ξ1 =?
f ξ2 and Φσ |= ξ1Σ =?

f ξ2Σ then there exist ψ′ = (∀S′.ξ′1 =?
f ξ
′
2 ⇐ ϕ′) ∈ F

and a substitution σ′ such that dom(σ′) = vars1(S′), ψ 'r ψ
′, (Φσ,Σ, σ) |= ϕ′.

For a deduction or equality formula ∀S.H ⇐ ϕ, the soundness predicate indicate that if
ϕ is satisfied then so is H. Intuitively, with the completeness predicate, we indicate that if
some instantiation of H can be satisfied then there exists some other formula ∀S′.H ′ ⇐ ϕ′

in F where the same instantiation satisfies ϕ′ (and also satisfies H ′ by soundness). In other
words, the completeness predicate ensures that we did not forget any cases.

All three previous invariants are lifted to set of extended symbolic processes in the sense
that all extended constraint in them should satisfy them.

When we apply rules with parameter k, we are typically saturating the set of solved
deduction facts K until every messages deducible with a recipe in T (F ,AX k ∪ Npub) is a
consequence of K restricted to the deduction formulas having universal second-order variables
in X 2

k r X 2
k−1.

Definition 37. We define the predicate Pcons defined on set of extended symbolic process S
such that Pcons(S) holds if and only if for all (P, C, Ce) ∈ S, by considering the minimal k
such that vars2(D(Ce)) ⊆ X 2

k , we have that the following holds:
For all f/n ∈ Fd, for all (ξ1, u1), . . . , (ξn, un) ∈ Conseq(K(C)) such that ξ1, . . . , ξn ∈

T 2
k , if f(u1, . . . , un)↓ is a constructor protocol term then there exists ξ ∈ T 2

k such that
(ξ, f(u1, . . . , un)↓) ∈ Conseq(K(C) ∪ D(C)).

Note that in the previous definition, we only the deduction fact from D with second-order
variable in X 2

k−1 to be satisfied.

Definition 38. We define the predicate Pset defined on set S of extended symbolic processes
S such that Pvect(S) holds if and only if for all (P1, C1, Ce1), (P2, C2, Ce2) ∈ S, for all ψ1 ∈ F(Ce1),
if for all ψ2 ∈ F(Ce2), ψ1 6'r ψ2 then for all (Σ, σ) ∈ Sole(C2),

• if ψ1 = (∀S.ξ `? u⇐ ϕ) then (Φ(C2)σ,Σ) |= ξ 6=?
f ξ

• if ψ2 = (∀S.ξ1 =?
f ξ2 ⇐ ϕ) then (Φ(C2)σ,Σ) |= ξ1 6=?

f ξ2

When we apply a case distinction rule on a set of extended symbolic processes, we in fact
apply the same rule with same parameters on each extended constraint systems of the set.
Thus, if a deduction formula ∀S.ξ `? u⇐ ϕ is present in a constraint system C, it intuitively
means that we guessed how an instantiation of ξ could produce a message, that is instantiation
of u. Thus, since we apply the same rules on all the other constraint systems, similar guesses,
i.e. recipe equivalent formulas, should appear in all the other constraint systems. Therefore,
when such recipe equivalent formulas cannot be found in a constraint system C2, it ensures
us that no instantiation of ξ can produce a message in C2.
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Definition 39. We define the predicate Psol defined on extended symbolic processes (P, C, Ce)
such that Psol((P, C, Ce)) holds if and only if

• vars2(C) ⊆ X 2
i iff vars2(Ce) ⊆ X 2

i , for all i.

• for all (Σ, σ) ∈ Sole(Ce), (Σ|vars2(C),σ|vars1(C) ∈ Sol (C).

This invariant indicates that all solutions of the extended constraint systems Ce is also
solutions of the symbolic constraint system C. We restrict the substitutions to the variables
of C since our extended constraint system may introduce new variables (e.g. by applying
most general solutions) but all these variables are uniquely defined by the instantiation of the
variables of C. As usual, we lift this invariant to set of (set of) extended symbolic processes.

For readability, we will denoted Pall(S) the predicate to hold when Pvect(S),Pform(S),
Pcomp(S),Psound(S), Pcons(S) and Psol(S) hold. Moreover, we will also lift these predicates
to sets of sets of extended symbolic processes.

B.2 Preservation by application of substitutions

In this section, we show that applying substitution preserves in some cases the different
notions we use in our algorithms, namely first-order and second-order equations, deduction
and equality facts; and uniformity.

Lemma 22. Let ψ be either a deduction fact, or an equality fact or a first-order equa-
tion or a second-order equation. For all ground frame Φ, for all substitutions Σ,Σ′, σ, σ′ if
dom(Σ) ∩ dom(Σ′) = ∅ and dom(σ) ∩ dom(σ′) = ∅ then (Φ,ΣΣ′, σσ′) |= ψ is equivalent to
(Φ,ΣΣ′, σσ′) |= ψΣσ and is equivalent to (Φ,Σ′, σ′) |= ψΣσ.

Proof. The proof of this lemma is done by case analysis on ψ.

Case u =? v: Consider (Φ,ΣΣ′, σσ′) |= u =? v. This is equivalent to uσσ′ = vσσ′. Since
vars(Σ) ∩ X 1 = ∅, we deduce that (Φ,ΣΣ′, σσ′) |= u =? v is equivalent to uΣσσ′ = vΣσσ′.
This is also equivalent to uΣσσσ′ = vΣσσσ′ and so (Φ,ΣΣ′, σσ′) |= uΣσ =? vΣσ. Note
that uΣσσ′ = vΣσσ′ is also equivalent to (Φ,Σ′, σ′) |= uΣσ =? vΣσ.

Case ξ =? ξ′: Similar to the previous case.

Case ξ `? u: Consider (Φ,ΣΣ′, σσ′) |= ξ `? u. It is equivalent to ξΣΣ′Φ↓ = uσσ′ and
Msg(ξΣΣ′Φ). But (ξ `? u)Σσ = ξΣ `? uσ. Moreover, by definition of substitution (in
particular the acyclic property), we deduce that ξΣΣ′Φ = ξΣΣΣ′Φ and uσσ′ = uσσσ′.
Hence, Msg(ξΣΣ′Φ) is equivalent to Msg(ξΣΣΣ′Φ); and ξΣΣ′Φ↓ = uσσ′ is equivalent to
ξΣΣΣ′Φ↓ = uσσσ′. Hence (Φ,ΣΣ′, σσ′) |= ξ `? u is equivalent to (Φ,ΣΣ′, σσ′) |= ξ `?

uΣσ. Note that Msg(ξΣΣ′Φ) and ξΣΣ′Φ↓ = uσσ′ are also equivalent to (Φ,Σ′, σ′) |= ξΣ `?

uσ.

Case ξ =?
f ξ
′: Similar to previous case.

B.3 Properties on consequence of set of deduction facts

Lemma 23. Let S be a set of solved deduction facts. For all substitutions σ of protocol terms,
for all (ξ, t) ∈ Conseq(S), (ξ, tσ) ∈ Conseq(Sσ).
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Proof. We know that (ξ, t) ∈ Conseq(S) implies ξ = C[ξ1, . . . , ξn] and t = C[t1, . . . , tn] for
some public context C and for all i, (ξi `? ti ∈ S. Hence (ξi `? tiσ ∈ Sσ which allows us to
conclude.

Lemma 14. Let S, S′ be two sets of solved deduction facts. Let ϕ = {Xi `? ui}ni=1 such
that all Xi are pairwise distinct. For all Σ, σ, for all (ξ, t) ∈ Conseq(S ∪ ϕ), if for all
i ∈ {1, . . . , n}, (XiΣ, uiσ) ∈ Conseq(SΣσ ∪ S′) then (ξΣ, tσ) ∈ Conseq(SΣσ ∪ S′).

Proof. We prove this result by induction on |ξ|. The base case (|ξ| = 0) being trivial as
there is no term of size 0, we focus on the inductive step.

Since (ξ, t) is consequence of S ∪ ϕ, we know by definition that one of the following
conditions hold:

1. ξ = t ∈ Npub

2. there exists ξ1, t1, . . . , tm, ξm and f ∈ Fc such that ξ = f(ξ1, . . . , ξm), t = f(t1, . . . , tm)
and for all i ∈ {1, . . . ,m}, (ξi, ti) is consequence of S ∪ ϕ.

3. ξ `? t ∈ S ∪ ϕ.

In case 1, we directly have by definition that (ξΣ, tσ) is a consequence of SΣσ ∪ S′. In case
2, by our inductive hypothesis on ξ1, . . . , ξm, we have that for all j ∈ {1, . . . ,m}, (ξjΣ, tjσ)
is a consequence of SΣσ ∪ S′. With ξΣ = f(ξ1Σ, . . . , ξmΣ) and tσ = f(t1σ, . . . , tmσ),
we conclude that (ξΣ, tσ) is consequence of SΣσ ∪ S′. In case 3, if ξ `? t ∈ S then
ξΣ `? tσ ∈ SΣσ and so the result directly holds. Else ξ `? t ∈ ϕ and so by hypothesis
ξΣ `? tσ ∈ Conseq(SΣσ ∪ S′).

The previous lemma showed that a consequence (ξ, t) is preserved when applying some
substitution Σ, σ under the right conditions. However, it is quite strong since we ensure that
ξΣ is consequence with tσ. In some cases, we cannot guarantee that ξΣ is consequence with
tσ but with some other first-order term. This is the purpose of the next lemma.

Lemma 24. Let S, S′ be two sets of solved deduction facts. Let ϕ = {Xi `? ui}ni=1 such that
all Xi are pairwise distinct. For all Σ, for all ξ ∈ Conseq(S ∪ ϕ), if for all i ∈ {1, . . . , n},
XiΣ ∈ Conseq(SΣ ∪ S′) then ξΣ ∈ Conseq(SΣ ∪ S′).

Proof. We prove this result by induction on |ξ|. The base case (|ξ| = 0) being trivial as
there is no term of size 0, we focus on the inductive step.

Since ξ is consequence of S∪ϕ, we know by definition that there exists t such that one
of the following conditions hold:

1. ξ = t ∈ Npub

2. there exists ξ1, t1, . . . , tm, ξm and f ∈ Fc such that ξ = f(ξ1, . . . , ξm), t = f(t1, . . . , tm)
and for all i ∈ {1, . . . ,m}, (ξi, ti) is consequence of S ∪ ϕ.

3. there exists t such that ξ `? t ∈ S ∪ ϕ.

In case 1, we directly have by definition that (ξΣ, t) is a consequence of SΣ ∪ S′. In case
2, by our inductive hypothesis on ξ1, . . . , ξm, we have that for all j ∈ {1, . . . ,m}, ξjΣ is a
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consequence of SΣ∪S′ hence there exists t′1, . . . , t
′
m such that for all j ∈ {1, . . . ,m}, (ξjΣ, t

′
j)

is a consequence of SΣ∪S′. With ξΣ = f(ξ1Σ, . . . , ξmΣ) and t′ = f(t′1, . . . , t
′
m), we conclude

that (ξΣ, t′) is consequence of SΣ ∪ S′. In case 3, if ξ `? t ∈ S then ξΣ `? t ∈ SΣ and so
the result directly holds. Else ξ `? t ∈ ϕ and so by hypothesis ξΣ ∈ Conseq(SΣ ∪ S′).

In the next lemma, we show that when a recipe is consequence of the sets of solved
deduction formulas KΣσ where (Σ, σ) is a solution of the constraint system, then all subterms
of that recipe are also consequence of KΣσ. This property is in fact guaranted by the fact
that K contains itself recipes consequence of itself. This is an important property that allows
us to generate solutions that satisfy the uniformity property.

Lemma 25. Let C = (Φ,D,E1,E2,K,F) be an extended constraint system such that Pform(C).
For all ξ ∈ Conseq(K ∪ D), for all ξ′ ∈ st(ξ), ξ′ ∈ Conseq(K ∪ D).

Proof. Since ξ ∈ Conseq(K ∪ D), we know that ξ = C[ξ1, . . . , ξn] where C is a public
context and ξ1, . . . , ξn are recipes of deduction facts from K or D. Hence since ξ′ ∈ st(ξ),
we have that the position p of ξ′ in ξ is either a position of C thus ξ′ ∈∈ Conseq(K ∪ D)
from the definition of consequence; or is a position of one of the ξi and thus we conclude
by the predicate Pform(C).

Lemma 26. Let C = (Φ,D,E1,E2,K,F) be an extended constraint system such that Pform(C).
For all (Σ, σ) ∈ Sole(C), for all ξ ∈ Conseq(KΣσ), for all ξ′ ∈ st(ξ), ξ′ ∈ Conseq(KΣσ).

Lemma 27. Let S be a set of ground deduction facts. Let Φ be a ground frame. Assume that
for all ψ ∈ S, Φ |= ψ. For all (ξ, t) ∈ Conseq(S), Φ |= ξ `? t.

Proof. We prove this result by induction on |ξ|. The base case being trivial, we focus on
the inductive step. Since (ξ, t) is consequence of S then one of the following properties
holds:

1. ξ = t ∈ Npub

2. there exist ξ1, t1, . . . , ξn, tn and f ∈ Fc such that ξ = f(ξ1, . . . , ξn), t = f(t1, . . . , tn)
and for all i ∈ {1, . . . , n}, (ξi, ti) is consequence of S

3. ξ `? t ∈ S.

In Case 1, the result trivially holds. In case two, a simple induction on (ξ1, t1), . . . , (ξn, tn)
allows us to conclude. In case 3, we know by hypothesis that Φ |= ξ `? t hence the result
holds

B.4 Most general solutions

In this section, we show that given an extended constraint system C, the rules 8 to 12 and ap-
pendix A.1.2 allows to compute the the most general solutions of C.

Given a constraint system C, let us denoteR(C) the set st2(img(mgu(E2(C))))∪sst2(K(C))∪
vars2(D(C))
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Lemma 28. Let C an extended constraint system such that Pform(C) and Psound(C). If any
rule is applicable on C then for all (Σ, σ) ∈ Sole(C), there exists C′, Σ′ such that C =⇒

 

C′ and
(ΣΣ′, σ) ∈ Sole(C′).

Proof. First, assume that there exist ξ, ζ ∈ R(C)2 and u such that ξ 6= ζ and (ξ, u), (ζ, u) ∈
Conseq(K∪D). Thanks to Psound(C) and lemmas 14 and 27, we deduce that Φσ |= ξΣ `?

uσ ∧ ζΣ `? uσ. As such we have ξΣ↓ = uσ = ζΣ↓. However by definition of a solution it
implies that ξΣ = ζΣ. Thus there exists Σ′ = mgu(ξ =? ζ) such that Σ′ 6= ∅ and Σ′ 6= ⊥.

In such a case, let us show that (Σ, σ) ∈ Sole(C′) with C → C′ by rule 8. We already
know that Σ |= E2(C) and since ξΣ = ζΣ with Σ′ = mgu(ξ =? ζ), we directly have that
Σ |= E2(C)Σ′ ∧ Σ′. Moreover, K(C)Σ = K(C)Σ′Σ. Hence, the two bullets of the definition
of solutions is trivially satisfied by that fact that (Σ, σ) ∈ Sole(C). Therefore, we conclude
that (Σ, σ) ∈ Sole(C′).

Let us now consider the case where our assumption do no hold. Thus since we assume
that at least one rule is applicable on C, there exists X `? u ∈ D(C) where u 6∈ X 1. Let us
do a case analysis on XΣ since XΣ ∈ Conseq(KΣσ) by definition of a solution.

• either XΣ ∈ Npub: in such a case, we have C → C′ by rule 8 and we can prove
similarly as in the previous case that (Σ, σ) ∈ Sole(C′);

• or XΣ = f(ξ1, . . . , ξn) where ξi ∈ Conseq(KΣσ) for all i: Note that we know that
XΣΦσ↓ = uσ. Hence u = f(u1, . . . , un) for some u1, . . . , un. We deduce that for all
i, Φσ |= ξi `? uiσ. Thus, by considering Σ′ = {Xi 7→ ξi}ni=1, we can conclude that
C → C′ by rule 9 and (ΣΣ′, σ) ∈ Sole(C′);

• or XΣ `? uσ ∈ KΣσ (since once again XΣΦσ↓ = uσ): Thus there exists ξ `? v ∈ K
such that ξΣ = XΣ and uσ = vσ. Hence mgu(ξ,X) exists and σ |= u =? v.
Thereofore, we can conclude that C → C′ by rule 10 and (Σ, σ) ∈ Sole(C′);

Lemma 29. Let C 6= ⊥ an extended constraint system such that C

 

= C, Pform(C) and
Psound(C). If C 6−→

 

and C is a solved extended constraint system then mgs(C) = {mgu(E2|=)}.

Proof. We know that for all (Σ, σ) ∈ Sole(C), Σ |= E2(C) thus we directly obtain the
existence of Σ′ such that Σ = mgu(E2|=)Σ′. Consider now the second bullet point of the
definition of most general solutions. We know that C is solved. Hence consider a fresh
bijective renaming Σ1 from vars2(Σ0) ∪ vars2(C) \ dom(Σ0) to Npub. Let us define σ1 =
{x 7→ XΣ1 | X `? xD(C)}. Thanks to Pform(C), Psound(C) and lemmas 24, 26 and 27 that
(Φmgu(E1(C)|=)σ1,mgu(E2|=)Σ1,mgu(E1(C)|=)σ1) |= D∧E1∧E2. Moreover, by lemma 26,
we know that the first bullet of the definition of solution is satisfied. Finally, the second
bullet is satisfied otherwise rule 12 would be applicable which contradict C

 

= C. Therefore,
(mgu(E2|=)Σ1,mgu(E1(C)|=)σ1) ∈ Sole(C). We conclude that mgs(C) = {mgu(E2|=)}.

Lemma 30. Let C an extended constraint system such that C

 

= C, Pform(C) and Psound(C).
If C 6−→

 

and C is not solved then Sole(C) = ∅.
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Proof. Since C is not solved, we have two possibilities: Either (a) all deduction facts in
D are have variables as right hand term but not pairwise distinct. But in such a case
rule 8 would be applicable which contradicts C 6−→

 

; or (b) there exists (X `? u) ∈ D(C)
such that u 6∈ X 1. Since rule 8 is not applicable, we deduce that u 6∈ Npub and for all
ξ, ζ ∈ R(C) \ {X}, (ξ, u) 6∈ Conseq(K ∪ D). But rule rule 9 is not applicable therefore, we
deduce that u ∈ Nprv.

Assume now that Sole(C) 6= ∅ and so (Σ, σ) ∈ Sole(C). Thus XΣΦ↓ = u. By definition
of a solution, we know that (XΣ, u) ∈ Conseq(K(C)Σσ). Since u ∈ Nprv it implies that
there exists (ξ `? v) ∈ K(C) such that XΣ = ξΣ and u = vσ. Note that by Pform(C), we
also have that v 6∈ X 1 and so u = v. In such a case, we obtain a contradiction with the
fact the rule 10 is not applicable.

By combining the previous three lemmas, we can directly derive the following lemma:

Lemma 13. Let C be an extended constraint system obtained during the procedure

mgs(C) = {Σ|vars2(C) | C
Σ
=⇒

 

C′, C′ 6= ⊥, C′ solved}

B.5 Properties of the partition tree

In this section we focus on the different properties of that must be satisfied by the partition
tree.

Let us first start by noticing that the case distinction rules and simplification rules pre-
serves the first order solutions of the extended constraint systems. This property is stated in
the following lemma.

Lemma 31. Let S be a set of set of extended symbolic processes such that Pall(S). Let
S → S ′ by applying only case distinction or simplifications rules (i.e. no symbolic transitions)
following the priority order Sat < Equality < Rew. We have that Pall(S ′) and:

• for all S ∈ S, for all (P, C, Ce) ∈ S, for all (Σ, σ) ∈ Sole(Ce), there exist S′ ∈ S ′,
(P, C, Ce′) ∈ S′ and (Σ′, σ′) ∈ Sole(Ce′) such that σ|vars1(C) = σ′|vars1(C)

• for all S′ ∈ S, for all (P, C, Ce′) ∈ S′, for all (Σ′, σ′) ∈ Sole(Ce′), there exist S ∈ S,
(P, C, Ce) ∈ S and (Σ, σ) ∈ Sole(Ce) such that Σ|vars2(C) = Σ′|vars2(C) and σ|vars1(C) =
σ′|vars1(C)

Proof. We do a case analysis on the rule applied. Let us look first at the simplification
rules.

First, let us notice the result directly hold for rules 13, 16 and 17. Indeed, rule 15
does not modify constraints on recipe and preserves the constraints on protocol terms.
Moreover, rules 16 and 17 affect F which do not impact the solutions of the extended
constraint system. For rule 14, since mgs(Ce) = ∅, we have by definition of most general
unifiers that Sole(Ce) = ∅ (otherwise the first bullet of the definition is contradicted). Hence
the result holds since Sole(⊥) = ∅. Similarly, Rule 16 checks whether the disequations ∀x̃.φ
is trivially true meaning that the rule preserves the solutions.

Let us now consider the simplification rules on sets of extended symbolic processes.
Rule 18 only remove an extended symbolic process with an extended constraint systems
having no solution hence the result hold. Rule 19 splits a set of S into two sets thus
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preserving the extended symbolic processes, and rule 21 only adds element in F which do
not impact the solutions of a constraint system. Therefore, for all these rules, the result
hold. For rule 20 however, the result is not direct since the rule adds an element in the set
K which has an impact on the solutions of a constraint system. However, we know from
the application condition of the rule that the head protocol terms of the deduction facts
added in Ki are not consequence of Ki ∪Di. But we also know that Pcons(S) and Pform(S)
hold hence it implies that the recipe ξ (see fig. 14) contains ax|Φi| and vars2(Di)∩X 2

|Φi| = ∅.
Hence, ξ cannot appear in the second order solutions Cei which allows us to conclude that
the solutions are preserved.

Finally, the case distinction rules apply a perfect partition of the solutions by duplicating
the set of extended symbolic processes and applying Σ on of the set and ¬Σ on the other
(see the definition of rule Sat, Equality and Rew).

We can also show that the static equivalence is preserved by application of the case
distinction and simplification rules.

Lemma 32. Let S be a set of set of extended symbolic processes such that Pall(S). Let
S → S ′ by applying only case distinction or simplifications rules (i.e. no symbolic transitions)
following the priority order Sat < Equality < Rew. We have that for all S ∈ S, for
all (P1, C1, Ce1), (P2, C2, Ce2) ∈ S, for all (Σ, σ1) ∈ Sole(Ce1) , for all (Σ, σ2) ∈ Sole(Ce2), if
Φ(C1)σ1 ∼ Φ(C2)σ2 then for all S′ ∈ S ′, for all Σ′ such that Σ′|vars2(C1) = Σ|vars2(C1),

(P1, C1, Ce1 ′) ∈ S′ ∧ (Σ′, σ′1) ∈ Sole(Ce1 ′) ∧ σ1|vars1(C1) = σ′1|vars1(C1)

if and only if

(P2, C2, Ce2 ′) ∈ S′ ∧ (Σ′, σ′2) ∈ Sole(Ce2 ′) ∧ σ2|vars1(C2) = σ′2|vars1(C2)

Proof. Once again, let us consider the potential rule applied. Note that for case distinction
rules, the proof is simple since each rule create a partition of the second-order solutions with
respect to some substitution Σ0 corresponding to a most general solutions (see the definition
of rule Sat, Equality and Rew). Thus, assume w.l.o.g. that (Σ′, σ′1) ∈ Sole(Ce1 ′).

First consider that S′ corresponds to branch in which we applied ¬Σ0. In such a case,
since we already know that Σ′ satisfies ¬Σ0 and no other constraint is added, we directly
obtain from (Σ, σ2) ∈ Sole(Ce2) that (Σ′, σ′2) ∈ Sole(Ce2 ′) (in this case, we even have σ2 = σ′2.

Now consider that S′ corresponds to the branch in which we applied Σ0. In such a case,
the application of Σ0 on Ce2 regroups all the solution of Ce2 that satisfies Σ0. Since we know
that (Σ, σ2) ∈ Sole(Ce2) and Σ′|vars2(C1) = Σ|vars2(C1) which implies Σ′|vars2(C2) = Σ|vars2(C2),
the result holds.

Concerning the simplification rules, the only problematic one is rule 19 (the other
ones do not split the set). However, thanks to Pvect(S), we know that if a deduction
fact occurs in constraint systems Ce1 but no recipe equivalent formula can be found in the
constraint system Ce2, then no solution of Ce2 can satisfy the head of the formula. However by
Pcomp(S), we also know that all solutions of Ce1 satisfies the deduction fact. However, since
(Σ, σ1) ∈ Sole(Ce1), (Σ, σ2) ∈ Sole(Ce2) and Φ(C1)σ1 ∼ Φ(C2)σ2, we obtain a contradiction.
Therefore, Ce1 and Ce2 are necessarily in the set of S ′.

The two previous lemmas allow us to obtain the soundness and completeness properties
of the partition tree (i.e. items 3 and 5). Note that 4 is also proved by 31 since a solution of
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a child constraint system is also a solution of parent one (second bullet point). We now need
to prove that all nodes of the partition tree are configuration. For that, we look at the shape
of the extended constraint systems when no more rule Sat, Equality or Rew is applicable.

Lemma 33. Let S be a set of set of extended symbolic processes such that Pall(S) and no
instance of the rule Sat, Equality or Rew is applicable. For all S ∈ S, for all (P, C, Ce) ∈
S, |mgs(Ce)| = 1.

Proof. Since no rule is applicable, we need to look at the application conditions of each of
these rules. Let us denote Ce = (Φ,D,E1,E2,K,F).

Let us look at the shape of F. Since the rule Sat is not applicable (case b), we know
that for all ψ ∈ F, either ψ is solved or mgs(Ce|ψ) = ∅. However, since the normalisation
rules from fig. 13 are also not applicable, we deduce that mgs(Ce|ψ) 6= ∅. Therefore, ψ
is solved. Similarly, the non applicability of the rule Sat (case c) and the normalisation
rules from fig. 13 also tell us that E1 is only composed of syntactic equations (no more
disequations). Finally, since Sat is not applicable (case a), we deduce that either Ce is
solved or mgs(Ce) = ∅. Once again due to rules fig. 13, we deduce that mgs(Ce) 6= ∅
meaning that Ce is solved.

Since Ce is solved, we deduce that all deduction facts in D = {Xi `? xi}ni=1 for some n
and pairwise distinct xis and Xis. Consider now the substitutions ΣNpub

= {Xi → ni}ni=1

and σNpub
= {xi → ni}ni=1 where the nis are pairwise distincts public names, i.e. ni ∈ Npub.

Since no more normalisation rules are applicable, we know that the disequations in E2

not trivially unsatisfiable. Therefore by replacing the free variables of the disequations by
names allow us to obtain that ΣNpub

|= E2| 6=. By considering Σ = mgu(E2|=)Σ′, we obtain
that Σ |= E2. Moreover we proved that E1 does not contain any disequations, we directly
obtain that mgu(E1)σNpub

|= E1. Therefore, by defining σ = mgu(E1)σNpub
, we obtain that

(Φσ,Σ, σ) |= D ∧ E1 ∧ E2.
It remains to show the last two conditions of definition 23: Notice that Pform(Ce) holds

and so we have that for all ξ ∈ img(mgu(E2|=)), ξ ∈ Conseq(K ∪ D). Similarly, we have
that for all ξ `? u ∈ K, for all ξ′ ∈ st(ξ), ξ′ ∈ Conseq(K ∪ D). Therefore, by applying
lemma 24, and by applying a small induction on the size of the recipe in img(Σ), we
obtain that for all ξ ∈ st(img(Σ)), ξ ∈ Conseq(KΣ). Finally, following the definition of
consequence and since Psound(Ce) holds, we also deduce that ξ ∈ st(img(Σ)), Msg(ξΦσ)
holds.

Let us now look at the final condition of definition 23. We know that Ce is solved
meaning that for all ξ, ζ ∈ stc(img(mgu(E2|=)),K∪D)2 ∪ (Npub× vars2(D)), (ξ, u), (ζ, u) ∈
Conseq(K ∪ D) implies ξ = ζ. Since Σ = mgu(E2|=)ΣNpub

, we directly obtain that for all
ξ, ζ ∈ stc(Σ,KΣ), (ξ, u), (ζ, u) ∈ Conseq(KΣ) implies ξ = ζ.

This lead to (Σ, σ) ∈ Sole(Ce). Considering that Σ = mgu(E2|=)ΣNpub
and any other

solutions (Σ′, σ′) ∈ Sole(Ce) shall satisfy Σ′ |= E2, we deduce that mgs(Ce) = {mgu(E2|=)}
and so |mgs(Ce)| = 1.

Let us now show that all extended constraint systems in the set have the same solutions
and that they are statically equivalent.

Lemma 34. Let S be a set of set of extended symbolic processes such that Pall(S) and
no instance of the rule Sat, Equality or Rew is applicable. For all S ∈ S, for all
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(P1, C1, Ce1), (P2, C2, Ce2) ∈ S, if (Σ, σ1) ∈ Sole(Ce1) then (Σ, σ2) ∈ Sole(Ce2) and Φ(Ce1)σ1 ∼
Φ(Ce2)σ2.

Proof. In the proof of the previous lemma, we showed that all extended constraint systems
Ce in S have a particular form, that is (1) all deduction facts in D(Ce) have pairwise distinct
variables as right hand side and (2) E1(Ce) only contain syntactic equation. Moreover, we
know that all extended constraint systems have the same structure. Therefore, if (Σ, σ1) ∈
Sole(Ce1), we deduce that Σ |= E2(Ce1) and for all ξ ∈ st(img(Σ)), ξ ∈ Conseq(K(Ce1)Σ),
meaning that Σ |= E2(Ce2) and ξ ∈ Conseq(K(Ce2)Σ). Since the first order solutions are
always completely defined by the second-order substitutions, we can build σ′2 such that for
all X `? x ∈ D(Ce2), XΣ(Φ(Ce2)σ′2)↓ = xσ′2. Moreover, since Psound(Ce1) and Psound(Ce2) both
hold and since for all ξ ∈ st(img(Σ)), ξ ∈ Conseq(K(Ce2)Σ), we deduce that for all ξ ∈
st(img(Σ)), Msg(ξΦ(Ce2)σ′2). Note that we also need to satisfy the syntactic equations in E1.
However thanks to Pform(Ce2) holding, we know that dom(mgu(E1(Ce2))∩vars1(D(Ce2)) = ∅.
Thus, we can build σ2 = mgu(E1(Ce2))σ′2 and obtain that (Σ, σ2) |= D(Ce2)∧E1(Ce2)∧E2(Ce2).
Note that by origination property of an extended constraint system, we have Φ(Ce2)σ′2 =
Φ(Ce2)σ2. Therefore, since we already prove that for all ξ ∈ st(img(Σ)), Msg(ξΦ(Ce2)σ′2) and
ξ ∈ Conseq(K(Ce2)Σ), it only remains to prove the second bullet point of definition 23 to
obtain that (Σ, σ2) ∈ Sole(Ce2).

Proving this property is in fact closely related to proving that Φ(Ce1)σ1 ∼ Φ(Ce2)σ2.
Indeed, if we can prove the latter then we directly obtain the former since (Σ, σ1) ∈ Sole(Ce1).

Let ξ, ξ′ ∈ T 2. Let us show that:

• Msg(ξΦ(Ce1)σ1) iff Msg(ξΦ(Ce2)σ2)

• if Msg(ξΦ(Ce1)σ1) and Msg(ξ′Φ(Ce1)σ1) then ξΦ(Ce1)σ1↓ = ξ′Φ(Ce1)σ1↓ iff ξΦ(Ce2)σ2↓ =
ξ′Φ(Ce2)σ2↓.

We prove this by induction on (N(ξ, ξ′), |ξΦ(Ce1)σ1↓|) where N is the number of subterms ζ
in ξ, ξ′ such that ζ 6∈ Conseq(K(Ce1)Σ) (recall that since Ce1 and Ce2 have the same structure,
we have ζ ∈ Conseq(K(Ce1)Σ) iff ζ ∈ Conseq(K(Ce2)Σ)). For this induction, we consider
the lexicographic order on (N(ξ, ξ′),max(|ξ|, |ξ′|).

The base case (N(ξ, ξ′), |ξΦ(Ce1)σ1↓|) = (0, 0) being trivial (there is no protocol term of
size 0), we focus on the two inductive steps:

Inductive steps (N(ξ, ξ′), |ξΦ(Ce1)σ1↓|) = (p, q) with p > 0: Assume Msg(ξΦ(Ce1)σ1). Let
us also assume by contradiction that ¬Msg(ξΦ(Ce2)σ2). Since we know that N(ξ, ξ′) > 0,
there exists ζ ∈ st(ξ, ξ′) such that ζ 6∈ Conseq(K(Ce1). Without lost of generality we can
consider that ζ ∈ st(ξ) (otherwise we can apply our inductive hypothesis on ξ twice since
N(ξ, ξ) would be equal to 0 and so we would obtain a contradiction). Moreover, let us
consider ζ such that |ζ| is minimal. Therefore, by definition of consequence, we deduce
that ζ = g(ζ1, . . . , ζn) with g ∈ Fd and for all i ∈ {1, . . . , n}, ζi ∈ Conseq(K(Ce1)). Since
Msg(ξΦ(Ce1)σ1) we also deduce that g(ζ1, . . . , ζn)Φ(Ce1)σ1↓ is a protocol term. Therefore,
there exist a rewrite rule g(`1, . . . , `n)→ r and a substitution γ such that `iγ = ζiΦ(Ce1)σ1↓
for all i = 1 . . . n.

Recall that the rule Rew is not applicable on Ce1 and Ce2. Therefore we can show if
¬Msg(ξΦ(Ce2)σ2) and g(ζ1, . . . , ζn)Φ(Ce1)σ1↓ is a protocol term then we necessarily have
that there exists ζ ′1, . . . , ζ

′
n and u such that g(ζ ′1, . . . , ζ

′
n) `? u1 ∈ F(Ce1) and ζ ′iΣΦ(Ce1)σ1↓ =
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ζiΦ(Ce1)σ1↓. Moreover, since the normalisation rules are also not applicable (in particu-
lar rule 19), we deduce that there exists u2 such that g(ζ ′1, . . . , ζ

′
n) `? u2 ∈ F(Ce2). By

Pform(Ce1), we know that for all i ∈ {1, . . . , n}, ζ ′i ∈ Conseq(K(Ce1) ∪ D(Ce1)) and so ζ ′iΣ ∈
Conseq(K(Ce1)Σ). Moreover, by hypothesis on ζi, we know that ζi ∈ Conseq(K(Ce1)Σ).
Thus, by applying our inductive hypothesis, we obtain that ζiΦ(Ce2)σ2↓ = ζ ′iΣΦ(Ce2)σ2↓.
Moreover, by Psound(Ce2), we know that g(ζ ′1, . . . , ζ

′
n)ΣΦ(Ce2)σ2↓ = u2σ2 which is a pro-

tocol term. We can conclude that g(ζ1, . . . , ζn)ΣΦ(Ce2)σ2↓ is a protocol term and so
Msg(ξΦ(Ce2)σ2) giving us a contradiction.

Assume now that ξΦ(Ce1)σ1↓ = ξ′Φ(Ce1)σ1↓, Msg(ξΦ(Ce1)σ1) and Msg(ξ′Φ(Ce1)σ1). Let
us once again take the smallest ζ ∈ st(ξ, ξ′) such that ζ 6∈ Conseq(K(Ce1). We already
proved above that there exist u1, u2, g, ζ ′1, . . . , ζ

′
n, ζ1, . . . , ζn such that:

• ζ = g(ζ1, . . . , ζn)

• g(ζ ′1, . . . , ζ
′
n) `? u1 ∈ F(Ce1)

• g(ζ ′1, . . . , ζ
′
n) `? u2 ∈ F(Ce2)

• for all i ∈ {1, . . . , n}, ζiΦ(Ce2)σ2↓ = ζ ′iΣΦ(Ce2)σ2↓ and ζiΦ(Ce1)σ1↓ = ζ ′iΣΦ(Ce1)σ1↓.

By Pcons(Ce1), we know that there exists β such that (β, u1) ∈ Conseq(K(Ce1) ∪ D(Ce1).
However the normalisation rule 21 is not applicable on the set of extended symbolic pro-
cesses. Thus, we deduce that there exists β′ such that (β′, u1) ∈ Conseq(K(Ce1) ∪ D(Ce1)
and g(ζ ′1, . . . , ζ

′
n) =?

f β′ ∈ F(Ce1). Once again due to the normalisation rule 19, we ob-

tain that g(ζ ′1, . . . , ζ
′
n) =?

f β
′ ∈ F(Ce2). But Psound(Ce2) and Psound(Ce1) hold meaning that

(Φ(Ce2)σ2,Σ, σ2) |= g(ζ ′1, . . . , ζ
′
n) =?

f β
′ and (Φ(Ce1)σ1,Σ, σ1) |= g(ζ ′1, . . . , ζ

′
n) =?

f β
′.

Note that if p is the position of ζ in ξ then we have N(ξ[β′Σ]p, ξ
′) < N(ξ, ξ′). Thus

by applying our inductive hypothesis, we obtain that (Φ(Ce2)σ2,Σ, σ2) |= ξ[β′Σ]p =?
f ξ′.

Since (Φ(Ce2)σ2,Σ, σ2) |= g(ζ ′1, . . . , ζ
′
n) =?

f β′ and (Φ(Ce2)σ2,Σ, σ2) |= g(ζ ′1, . . . , ζ
′
n) =?

f

g(ζ1, . . . , ζn), we conclude that (Φ(Ce2)σ2,Σ, σ2) |= ξ =?
f ξ
′.

Inductive step (0,max(|ξ|, ξ′|) with max(|ξ|, ξ′| > 0: In such a case, we know that ξ, ξ′ ∈
Conseq(K(Ce1)Σ) and ξ, ξ′ ∈ Conseq(K(Ce2)Σ). By definition of consequence and by
Psound(Ce1) and Psound(Ce2), we directly obtain that Msg(ξΦ(Ce1)σ1) and Msg(ξΦ(Ce2)σ2)
(same thing for ξ′). Now assume that (Φ(Ce1)σ1,Σ, σ1) |= ξ =?

f ξ′. Since both ξ, ξ′ are
consequence of K(Ce1)Σ, we deduce that:

• either ξ = f(ξ1, . . . , ξn) and ξ′ = f(ξ′1, . . . , ξ
′
n) with f ∈ Fc and (Φ(Ce1)σ1,Σ, σ1) |=

ξi =?
f ξ
′
i for all i. Therefore, we can apply our inductive hypothesis on the (ξi, ξ

′
i)s to

conclude.

• or ξΣ, ξ′Σ ∈ K(Ce1)Σ: Since we know that the rule Equality is not applicable, it im-
plies that ξ =?

f ξ
′ ∈ F(Ce1) and so ξ =?

f ξ
′ ∈ F(Ce2) thanks to the normalisation rule 19.

Since Psound(Ce2) holds, we can conclude that (Φ(Ce2)σ2,Σ, σ2) |= ξ =?
f ξ
′.

• or ξΣ ∈ K(Ce1)Σ and ξ′ = f(ξ′1, . . . , ξ
′
n) with f ∈ Fc; Once again since the rule

Equality is not applicable, we deduce that there exists ζ ′1, . . . , ζ
′
n such that ξ =?

f

f(ζ ′1, . . . , ζ
′
n) ∈ F(Ce1). Note from Psound(Ce1) that in such a case, (Φ(Ce1)σ1,Σ, σ1) |=
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ξ =?
f f(ζ ′1, . . . , ζ

′
n) meaning that (Φ(Ce1)σ1,Σ, σ1) |= ξ′i =?

f ζ
′
i for all i ∈ {1, . . . , n}.

Since |ξ′iΦ(Ce1)σ1↓| < |ξΦ(Ce1)σ1↓|, we can apply our inductive hypothesis on all
(ξ′i, ζ

′
i) meaning that (Φ(Ce2)σ2,Σ, σ2) |= f(ζ ′1, . . . , ζ

′
n) =?

f ξ′. However, thanks to

the normalisation rule 19 not being applicable, ξ =?
f f(ζ1, . . . , ζ

′
n) ∈ F(Ce1) implies

ξ =?
f f(ζ ′1, . . . , ζ

′
n) ∈ F(Ce2) and so by Psound(Ce2), we obtain that (Φ(Ce2)σ2,Σ, σ2) |=

ξ =?
f f(ζ ′1, . . . , ζ

′
n) which allows us to conclude that (Φ(Ce2)σ2,Σ, σ2) |= ξ =?

f ξ
′.
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