
Secure composition of PKIs with public key protocols

Vincent Cheval∗, Véronique Cortier∗, Bogdan Warinschi†
∗LORIA, CNRS/INRIA/UL, France

†University of Bristol, UK

e-mail: vincent.cheval@inria.fr, veronique.cortier@loria.fr, bogdan@compsci.bristol.ac.uk

Abstract—We use symbolic formal models to study the com-
position of public key-based protocols with public key infras-
tructures (PKIs). We put forth a minimal set of requirements
which a PKI should satisfy and then identify several reasons
why composition may fail. Our main results are positive and
offer various trade-offs which align the guarantees provided
by the PKI with those required by the analysis of protocol with
which they are composed. We consider both the case of ideally
distributed keys but also the case of more realistic PKIs.

Our theorems are broadly applicable. Protocols are not
limited to specific primitives and compositionality asks only
for minimal requirements on shared ones. Secure composition
holds with respect to arbitrary trace properties that can be
specified within a reasonably powerful logic. For instance,
secrecy and various forms of authentication can be expressed
in this logic. Finally, our results alleviate the common yet
demanding assumption that protocols are fully tagged.

1. Introduction

Modular analysis of cryptographic systems is an area of
permanent concern in security research. Composition results
are set either in the symbolic model (e.g. [22], [19], [20],
[7], [30], [25], [17], [3]) or in the computational model
(e.g. [15], [31], [16], [27], [26], [14], [10], [12]). Some
of these results yield general frameworks where arbitrary
components can be safely combined but, unsurprisingly, rely
on particularly strong hypothesis. Other results provide nar-
rower composition theorems tailored to specific cryptographic
tasks but afford more relax and practical assumptions on the
components.

This paper falls within the latter research direction. We
study the composition of protocols for establishing public key
infrastructures (PKIs) with arbitrary other protocols which
require such keys. For two parties the question we adress is
(using ad-hoc notation): when can a PKI protocol P = P1 | P2
that distributes public (and secret) keys be composed with
a protocol Q = Q1 | Q2 that uses these keys. We are after a
theorem which (using informal notation) guarantees that

P1 | P2 |= φPKI ⇒ P1.Q1 | P2.Q2 |= secrecy(s)

provided that

Q1(skA,pk(skB)) | Q2(skB,pk(skA)) |= secrecy(s)

That is, a secure PKI infrastructure P (as captured by some
security property φPKI) can be safely used by a protocol
Q provided that Q is secure (preserve the secrecy of some
piece of data s) when analyzed with honestly generated keys.
In the above theorem, think of P1 as the PKI component
which provides the secret key to user A and informs him of
the public key of user B; protocol P2 plays the converse role
for user B.

This type of composition result is often simply assumed!
For example, it is quite common for the analysis of protocols
that use public keys to rely on the assumption that prior to
their execution the PKI keys have been generated, distributed
to all parties, and that the link between the identities of
parties and their public keys is known to everyone. This
convenient idealization of key distribution is often adopted
by analysis via automatic tools (e.g. ProVerif[6], Scyther [21],
Avispa [4], or Tamarin [29]) and reflects compelling inuition:
PKI infrastructures (such as X.509) are designed to distribute
and certify keys, independently of the protocols that will
use such keys. This intuition is not supported by rigorous
underpiannings and it may actually be wrong since the
guarantees provided by the PKI are not always aligned with
those assumed by the subsequent protocol. For example,
PKIs do not guarantee that a malicious party registers the
same key with different registration authorities (so the same
user may have two different public keys), do not guarantee
that different users do not share the key or, more generally,
that each user has followed honestly the registration process.
In fact, it is not clear even what minimal guarantees for a
PKI can still ensure a composition result.

There has been relatively little research on the problem
of secure composition of PKIs with other protocols and, in-
terestingly, most work is set within computational model (see
related work). In this paper we approach the problem using
symbolic models. As we discuss later, the higher level of
abstraction yields results of broader applicability. Moreover,
our results are relevant for proofs that use automated tools
since they usually work on top of some symbolic model.

In a nutshell, our results are as following. We reconfirm
that the mismatch between assumptions made in the analysis
of Q and the guarantees offered by some PKI protocols
P leads to insecure composition. Our main results are then
rigorous composition theorem which carefully account for the
mismatch between what is assumed and what is guaranteed.

Below we highlight the main features of our work. A full
version of this paper is available here [1].

THE PERILS OF IDEALIZED KEY DISTRIBUTION. At a high
level the theorem we are after may fail because of implicit
assumptions that underly the analysis of Q. As explained
above, the assumption is usually that the keys of parties
have been honestly generated and are in place before the
execution of Q. For a variety of reasons, this assumption
does not hold when keys are managed by a real PKI. For
example, when parties generate their own secret/public keys
and have them certified (e.g. the Verisign process for issuing
certificates), keys are not necessarily honestly generated.
Other causes include “confusion” of messages between the
protocol for key registration and subsequent protocols that
use these keys (which makes standalone analysis incomplete)
as well as the classic message parsing errors. In Section 2 we
illustrate through concrete counterexamples several obstacles
which need to be carefully accounted for by any generic
composition theorem.

COMPOSITION OF PKIS WITH ARBITRARY PROTOCOLS.
The counterexamples that we identify inform our main results.
We provide sufficient conditions to ensure that a protocol for
distributing public keys P composes securely with a protocol
Q which uses these keys, in the sense that the desired security
properties of Q are guaranteed.

Our first theorem imposes only minimal requirements
on P. These are formalized by formula φPKI (in a logic
on traces which we provide) and demand that secret keys
stay secret, that all parties have a consistent view of the
public keys of honest parties, and that honest parties use
distinct keys for signing and decryption. We emphasize that
φPKI provides no guarantees on the keys held by dishonest
parties. This weaker guarantees on the keys distributed by P
translates into a correspondingly stronger requirement on Q.
Its security needs to hold under a permissive key assignment
(which only reflects the guarantees offered by φPKI). We
refer to this version of Q as “permissive” Q.

In symbolic models, protocols are however never ana-
lyzed in their “permissive” form, but rather in the “ideal”
form where all keys (including those of dishonest parties) are
honestly generated and already predistributed. In this case the
above theorem does not apply (and in fact we give counterex-
ample protocols that shows that composition with realistic
PKIs fails). Our next theorem recovers a composition result
for such protocols, at the expense of stronger requirements on
the PKI: we strengthen the assumption on P to require that
besides φPKI it also satisfies φideal . This additional assumption
essentially asks that all honest users have a consistent view
of the keys for encryption and verification that belong to
other users, that keys of distinct agents are pairwise distinct
and that encryption and verification keys are also distinct.

Our theorems share several features. First, they treat the
properties of Q in a generic way. Composition preserves any
trace-based security property which can be specified by a
formula in a logic which we provide. In particular, (weak)
secrecy and various forms of authentication properties can
be specified in the logic. Interestingly, the security properties

we consider for P (φPKI and φideal) as well as permissive Q
can be encoded in existing tools such as ProVerif.

Our theorems are rather agnostic to the class of protocols
themselves. We consider arbitrary classes of protocols (possi-
bly with else branches) which employ arbitrary cryptographic
primitives (including e.g. Exclusive Or or Diffie-Hellman).
While we require the minimal condition that P and Q do
not share underspecified primitives we do permit that they
both use standard ones (encryption, signatures, hashes, . . .).

Sharing primitives between protocols leads to well-known
difficulties due to cross-protocol attacks. The traditional
solution is to assume that each use of these primitives is
“tagged” [20], [19], [3]. This convenient technique helps to
easily distinguish between messages of different protocols
but is not supported by current practice. Our theorems show
how one may avoid full tagging of primitives. We propose
a more general property that avoids cross-protocol attacks.
This property can be enforced by tagging mechanism but
also through alternative restrictions on the protocols, e.g.
that P and Q employ shared functions but always under
different keys or by minimal tagging assumptions (e.g. that
only occurrences of public keys, and not each individual use
of the primitives are tagged). For example, a PKI protocol
P may use the same signature (resp. encryption) scheme as
Q provided that keys shared from P to Q are either used to
sign (resp. encrypt) in P or Q but not both.
A CONVENIENT SPECIFICATION LANGUAGE. Our results are
set within a symbolic model similar to those that underlie
existing automated tools. It turns out that existing symbolic
formalisms (e.g. those close to the applied pi-calculus [2])
are not convenient to specify scenarios like those we treat
in this paper. For example, in the applied-pi calculus, it is
surprisingly difficult to express persistent storage e.g. of
a trusted server of symmetric keys shared by unbounded
number of pairs of agents. Modeling such a server requires
a heavy encoding using private channels. Tools like ProVerif
bypass this encoding by extending their calculus to include
tables. The problem is that the notion of “agent” is captured
implicitly in existing calculi and this makes it difficult to
reason in a simple manner about composition.

We design a new specification language. The main
feature is a notion of parameterized agents and names which
allows to conveniently talk about the different sessions of
protocols that share the same parameters. For example, we
can elegantly express that a server shares a symmetric key
KAS with any agent A by writing k[A,S]. Then one server
talking to infinitely many agents can be simply described by
a process of the form

!i R1(k[S,A[i]]) | R2(k[S,A[i]])

where R1 and R2 represent respectively the role of the server
and the agent. This extension can still be encoded in tools
like ProVerif, for proof purposes.
RELATED WORK. Our work uses and extends techniques
used in other existing composition result set withing symbolic
models, and is close in scope with some recent works on
the composition of PKIs that rely on computational models.

2

Relevant composition results within symbolic models
include [20] which characterizes when two protocols run in
parallel may share keys and [19] which studies what is a
good key establishment protocol and how it can be used.
These early works hold for trace properties. More recent
results establish similar results in the context of equivalence
properties, useful to model privacy properties [18], [3].
In [30], [25], [17], the authors study “vertical composition”:
when a protocol Q uses some secure, authenticated, or
confidential channel, how such a channel can be securely
realized? In contrast, our paper focuses here on PKI and
studies what are the properties of a good PKI and how it
can be used. Our proof techniques borrow from [3], [17].
However, in addition to considering a different type of
composition (PKI), we establish the first composition result
that does not require an explicit tagging scheme. In other
words, we can now compose actual protocols instead of
composing their tagged version. To establish such a general
result, we had to considerably reshape the proofs developed
e.g. in [3] or [17].

In the computational model there are several generic
frameworks for compositional analysis [15], [31], [26], [14]
all sharing the same underlying philosophy: components can
be designed separately, yet their security is preserved when
the components are used together, so composability comes
somehow for free. The strength of this level of security also
means that it may be difficult to achieve. Indeed, for public
key infrastructures the model for PKI as introduced by Barak
et al. [5] and later refined by [24] can only be achieved by
registration protocols which essentially ensure that the PKI
also learns the associated secret key.

The works of Boldyreva et al [8] and of Boyd et a. [9]
are closest in spirit to ours in that they are exclusively
concerned with the use of PKIs within other protocols and
primitives. Boldyreva et al. [8] consider the security of
asymmetric encryption and digital signatures in the presence
of attackers that can also interfere with the registration
process of long term keys. That work considers composition
of PKIs with these two important primitives but leaves
the study of implications to higher level protocols for
future work. More recently, Boyd et al. [9] have looked
at the use of PKIs within key exchange protocols. They
extend standard cryptographic model for key exchange with
adversarial capabilities that reflect potential PKI interference
(like registering malformed keys). The models can then be
used to construct key exchange protocols that protect against
some weaknesses in the PKI. However, strictly speaking the
results are not compositional results: there are no guarantees
for when the PKI is instantiated with an actual protocol.

2. Why composing with a PKI is hard?

In this section we discuss in more details why composi-
tion with a PKI does not work so well in general, providing
counter-examples and spelling out the assumptions we will
consider in the rest of the paper.

2.1. Minimal assumptions on the PKI

We first state what we view as the minimal property that
we believe a PKI should satisfy. Informally, we demand that:
• An honest agent has a unique public/private key pair and

a unique verification/signing key pair.
• Honest agents have pairwise distinct private/signing keys.
• Keys are consistently distributed, that is, honest agents

know each other public and verification keys.
• Decryption/signing keys of honest agents are private.

In this paper we explore whether these properties are actually
sufficient: can a PKI that satisfies the requirements above
be safely used together with any public key protocol Q?

2.2. Standard assumptions

Since composing a public-key protocol involves sharing
key material, we of course face the same issues as existing
composition results [20], [19], [18], [3]. In particular, one of
the protocols could act as a decryption oracle for the other
one. For example, assume that the PKI includes a challenge
response phase where the authority checks that A knows her
private key.

Auth→ A : {N}pkA
A→ Auth : N

This challenge phase may occur during the registration of
the key but also later, for example if A wishes to extend the
validity of the certificate associated with her key. Such a PKI
would break the security of most protocols that use public
keys. Consider for example, the following simple protocol
Q where B sends a secret to A using her public key.

B→ A : {s}pkA
Then Q executed in isolation with predistributed keys is
secure (it does not compromise s) while Q composed with
the PKI described above is insecure.

The standard way for preventing such behaviours [20],
[19], [18], [3] consists in tagging the encryption scheme
which a tag tpki that is specific to the protocol.

Auth→ A : {tpki,N}pkA
A→ Auth : N

In this paper we go one step further: we introduce a more
general property which ensures that messages of different
protocols are not confused. The usual tagging mechanism
is only one way to enforce this property. We show that it
suffices to ensure that functions shared between protocols
use different keys. In particular, a PKI protocol P may use
the same signature (resp. encryption) scheme as Q, if keys
provided by P to Q are used to sign (resp. encrypt) either
by P or Q but not by both. In practice, this condition is
often satisfied and allows us to compose protocols without
requiring a tagging scheme. A typical exception are protocols
where the PKI protocol uses the keys it provides to also
carry out a challenge response as proof of possession.

3

2.3. Confusing public keys with other material

Analysis of public key protocols typically assumes that
the keys of all parties have been honestly generated and
distributed. However, this assumption is not valid in all
scenarios, e.g. in the Verisign process for issuing certificates
where users generate their own secret/public keys and have
them certified. The following example shows that the mis-
match between assumption and reality may be problematic.

Assume a setting where public keys (or verification keys)
are used to identify parties. Consider a simple protocol where
A sends a message M to B, signed together with the identity
of B, to indicate that M is meant for B.

A→ B : [pkB,M]skA

When B receives the message M, he is convinced that A sent
it to him. Consider an attacker C who registers the string
pkC = pkB,pkC′ as his public key. Note that he may not
be able to decrypt message encrypted by pkC (or properly
sign with the corresponding key) but this still allows him to
mount an attack against the simple signing protocol.

A→C : [pkC,M]skA
C(A)→ B : [pkB,pkC′,M]skA since pkC= pkB,pkC′

That is, when A initiates a session with some malicious party
C, C can use the message in this session to impersonate
A towards user B. In practice, it could be the case that
A was requesting a service to C, and the attacker uses the
corresponding message to request a service to B, in the name
of A. So, while the protocol is secure when long term keys
of parties are honestly generated, the protocol is insecure if
parties manage to register malformed keys.

One way of circumventing this issue is to tag keys that
are part of messages (i.e. not used for signing/encryption).

A→ B : [tpkey(pkB),M]skA

Such a tagging makes sense as soon as the format of messages
ensures that public keys cannot be confused with other
material. However examples in the following sections show
that this countermeasure is not sufficient.

2.4. Confusing public keys with other keys

Even when public keys are not sent as payload, the
adversary may chose his dishonest key so that he can trigger
unexpected behaviors. Consider the case where A sends out
a secret encrypted with C’s public keys and (immediately)
decrypts the message with her private key.

A→ B : adec({s}pkC,skA)

Then C may simply chose his public key to be the public
key of A: pkC= pkA, yielding an attack in the protocol Q
described above. A similar issue occurs if A uses fixed, long
term, asymmetric keys. Our example is admittedly contrived
but it conveys well the composition issue. Intuitively, some
message may be encrypted at some point with a public key
which provenance is not known (this encryption may be

embedded in a safer encryption). And later, a decryption
guarantees that the message is processed only if the used
public key was an honest one. We could make it more
realistic by complexifying Q.

2.5. Several public keys for the same identity

One problem which is not fixed by the use of tagging
is that dishonest parties may register and use different keys
to identify themselves to different users. This may yield
composing issue as soon as Q contains (non trivial) else
branches. Notice that a dishonest agent may register different
keys for his identity. For example, A may believe C’s public
keys is pkC while B believes C’s public keys is pkC′. This can
created unexpected disequalities that undermine the security
of Q, as illustrated by the following example.

A→ B : [B,pkB]skA

A : [x,y1]skA, [x,y2]skA
y1 6=y2−→ B : s

A sends the public key of B as viewed by A, signed by A.
Then whenever A receives two certificates (one from A and
one from B), she may check that the two public keys coincide.
By interacting with two sessions of the protocol (one with A
and one with B), the attacker could obtain both [C,pkC]sigA
and [C,pkC′]sigB, and send them to A to learn the secret s.
While this example is again contrived, it presents well the
intuition: in case two honest agents A and B do not share the
same view on C, some unexpected behaviors may occur. To
circumvent this issue, we have two options: either consider
more demanding properties on the PKI (even dishonest keys
should be consistently distributed) or we analyze a more
flexible Q (see next sections). We explore both options in
this paper. This issue did not surface in previous composition
results since they either do not consider else branches [20],
[19] or do not consider dishonest keys [18], [3].

2.6. Related keys

Even if a PKI guarantees that honest agents have pairwise
distinct public keys, there is no guarantee that these keys
are independent. Key dependencies may lead to insecurity,
as exemplified by our next (pathological) example. Assume
that, possibly in interaction with the PKI, A obtains k as
private key (skA = k) while B obtains 〈k,k〉 (skB = 〈k,k〉).
This would break the security of the following protocol Q.

A→ B : {N}pkB
A : in(x). let y = adec(x,〈skA,skA〉) y=N−→ B : s

Then A sends a fresh nonce N encrypted with B’s public key
and then expects a message x, decrypts it with 〈skA,skA〉 and
leaks a secret (s) if she retrieves her nonce N. This protocol
would clearly be insecure with the PKI sketched above while
when keys are honestly and independently generated the
protocol is clearly secure.

One way to circumvent this problem is to ensure
through syntactical requirements that Q cannot break due

4

to dependencies of keys provided by P. Interestingly, this
issue is not specific to public key distribution. However,
previous results discarded such behaviors by either requiring
disjoint primitives [19] (the two protocols may not both use
concatenation) or requiring explicitly that keys established
by P are atomic or at least viewed as atomic by Q [18], [3].

2.7. Permissive Q

The examples in the previous sections show that typical
security assumptions on a PKI fail, in more than one way, to
allow composition with arbitrary public key protocols. One
option to recover composability is to require more from the
PKI, in particular w.r.t. the dishonest keys. Another option is
to analyze Q under a more “permissive” assumption which
makes no restrictions on how keys of dishonest parties are
created. For example, instead of analyzing sessions between
A, B and a dishonest C with perfectly distributed keys:

Q1(skA,pk(skB)) | Q2(skB,pk(skA)) | Q2(skB,pk(skC))

we may let agents input dishonest keys from the adversary.

Q1(skA,pk(skB)) | Q2(skB,pk(skA)) | in(x).Q2(skB,x)

Indeed, we show that if this permissive Q is secure then
it can be safely composed with a PKI, under much lighter
assumptions. Interestingly, such a permissive Q can be easily
encoded in existing tools (e.g. ProVerif, Tamarin, Scyther).

2.8. Summary

In this paper, we conduct a thorough analysis on how to
compose safely protocols with a PKI. Our main results are
summarized in Table 1. The rest of the paper is devoted to
the formalization and proof of these results. Interestingly, we
do not need to prove each result separately. Instead, we can
derive them from a general composition result (which will
not be fully stated in the paper, due to space constraints).

3. Framework

A cryptographic protocol describes how agents exchange
messages over a network. A standard framework for mod-
elling cryptographic protocols is a process algebra, such
as the applied pi-calculus [2]. It is typical for existing
approaches to have an implicit notion of agents: an honest
agent is modeled as a process while dishonest agents are
not described – their private keys are simply passed to the
attacker. This is not sufficient to describe some trust scenarios
like those underlying our results. We therefore introduce
novel specification framework which enhances the traditional
process algebra with an explicit notion of agent. In particular,
our framework provides the user directly with an intuitive
notion of honest and dishonest agents, discharging him from
having to hard-code which keys are known to the attacker.
We also believe that it can be used to specify more complex
scenario such as subnetworks, e.g. the particular protocol
topology described in the introduction where a server links
an unbounded number of pairs of parties.

3.1. Messages and agents

We assume a set of names N used to represent keys,
nonces, etc. We consider a set of agents A = AD]AH
where AD (resp. AH) represents the dishonest (resp. honest)
agents, a set of integer variables XN and a set of variables
X = Xt]Xa where Xt represents term variables and Xa
agent variables. All these sets are infinite. Lastly, we consider
a signature F = Fc]Fd which consists of a finite set of
function symbols and their arity. The subsets Fc and Fd
represent constructor and destructor function symbols.

Many calculi (e.g. applied pi calculus [2]) rely extensively
on the renaming of bounded variables and names in presence
of replication. However, this renaming becomes an hindrance
when one needs to refer to specific variables or names during
the protocol execution. Moreover, the renaming does not
allow a simple mapping between the different agents and
their shared knowledge. We therefore replace part of the
renaming with an alternative mechanism that relies on the
notion of parametrized agent and parametrized names.

We define the set of parametrized agents A as the set
of elements from Xa or of the form A[p1, . . . , pn] where
A ∈A , n ∈N and pi ∈N∪XN for i = 1 . . .n. We say that a
parametrized agent A[p1, . . . , pn] is honest (resp. dishonest)
when A ∈AH (resp. AD) and we denote by A H (resp. A D)
their set. When there is no parameter, we write A for A[].
For example, for a typical protocol, we will simply consider
one honest parameterized agent H[i] and one dishonest
parameterized agent D[i] to model honest agents a1,a2 . . . and
dishonest agents d1,d2 A local server talking to agents
inside an internal network can be be modeled as S[i] with
agents A[i, j] where agents A[i,1], . . . ,A[i,n] only talk to S[i].

Similarly, we define the set N of parametrized names
as the set of elements of the form k[A1, . . .An] where n≥ 1,
k ∈N and Ai ∈A for i = 1 . . .n. We say that a parametrized
name k[A1, . . . ,An] is honest when A1, . . . ,An are all honest
and is otherwise dishonest.

Terms are inductively defined as variables, names,
parametrized names and agents, closed by application of
function symbols (in a way that complies with arities). We
say that a term t is a constructor term when t does not
contain destructor function symbols. A term t is ground if
it does not contain any variables and integer variables.

The destructor and constructor function symbols represent
the cryptographic primitives used in the protocol. We model
their behavior by means of a rewriting system R and an
equational theory E that are standard rewriting techniques
used in symbolic cryptographic models (e.g. [23]). In our
model we require that the equations in E are between name-
free constructor terms and that the rewrite rules in R are of
the form f(t1, . . . , tn−1)→ tn where t1, . . . , tn are name-free
constructor terms and f ∈Fd . Moreover, we assume that R
is convergent modulo E we denote by u↓ the normal form of
u modulo E. Lastly, we consider the predicate Msg(u) which
holds when the normal form modulo E of any subterm of u is
a constructor term. In such a case, we say that u is a message.
Thanks to our expressive modeling which considers both a
rewrite system and an equational theory, we can model most

5

Q secure P secure PKI Additional hypotheses Permanent hypotheses

Qperm φPKI
Tagged Processes

• Only F 0 as comon signature
• Tagged private keys

Disjoint keys

Qideal φPKI∧φideal
Tagged Processes • Tagged public keys

• Only PKI keys in asym. enc.Disjoint keys

Figure 1: Summary of our composition results

primitives and in particular rather complex primitives such
as Exclusive Or, associative concatenation, Diffie-Hellman,
or blind signatures.

Example 1. We consider the signatures F =Fc]Fd where
Fd = {sdec/2, rsdec/2,adec/2, radec/2,check/2,proj1/1,
proj2/1} and Fc = {senc/2, rsenc/2,aenc/2, raenc/2,pk/1,
sign/2,vk/1,〈〉/2,h/1,⊕/2,0/0}. They represent determin-
istic and randomized symmetric encryption as well as
asymmetric encryption, signature, pairing, hash function
and exclusive or. Their behavior can be modeled with the
following rewriting system R:

sdec(senc(x,y),y) → x
check(sign(x,y),vk(y)) → x
adec(aenc(x,pk(y)),y) → x

proji(〈x1,x2〉) → xi with i ∈ {1,2})
rsdec(rsenc(x,y,z),z) → x

radec(raenc(x,y,pk(z)),z) → x

and the following equational theory E that models Exclusive
Or:

x⊕ x = 0 x⊕ (y⊕ z) = (x⊕ y)⊕ z
x⊕0 = x x⊕ y = y⊕ x

3.2. Processes

Processes in our framework are modeled using the
grammar in Figure 2. We discuss its less standard aspects
below, and we do so from the perspective of using this
specification framework to formulate our results.

Before we go into the details, we introduce a useful
refinement of how assignment is usually handled in processes.
We are motivated by our composition scenario. A PKI
infrastructure P assigns secret and public keys and these
keys may then be passed through variable assignment to a
process Q that depends on these keys. To indicate what type
of terms is expected to be assigned in a variable, we introduce
a typed variable assignment [x :=τ u]. Formally, we consider
a set T of types that contains sk,pk,vk,sig, corresponding
to types for resp. private, public, verification, and signing
keys. Similarly to parametrized names, we also consider the
infinite sets Xty and T of type variables and parametrized
types respectively. For example, a variable assignment with
type pk[A,B] will typically refer to the public key of B as
viewed by A. As we shall see later, this is very convenient to
relate variables among different agents and different sessions.
Given τ ∈ T , we denote by τH the set of parametrized types
τ[A1, . . . ,An] where A1, . . . ,An are honest.

P,Q = 0 null
| inA(c,x).P input
| outA(c,u).P output
| if u = v then P else Q conditional
| P | Q parallel
| !i P replication
| newA k.P name restriction
| agt(X ,S).P agent selection
| [x :=τ u].P variable assignment

where A∪ ∈A , S⊆A , X ∈Xa, x ∈Xt , i ∈XN, τ ∈ T and
c,u,v are terms.

Figure 2: Grammar of processes

The grammar of our processes is provided in Figure 2
and explained below. Part of our grammar is classical in
cryptographic process algebra. Note that we annotate inputs,
outputs and name restrictions by the agent performing them.
Moreover, a replication !i P is annotated by an integer i.
Intuitively, P is parametrized by the variable i that will be
instantiated at each replication by some (non necessarily
fresh) integer n ∈ N. This mechanism allows to differentiate
between different replicas of P. For example, !i R1(k[S,A[i]]) |
R2(k[S,A[i]]) represents a server talking to infinitely many
agents, each of them sharing a ket k[S,A] with him. Even
more interestingly, we can represent the case of an unbounded
number of internal networks, where inside each network i,
agents may only communicate among themselves and to a
router S[i], while routers may communicate between them.
The corresponding process is !i R1(S[i]).! j R2([S[i],A[i, j]]),
which denotes multiples sessions of R1 and R2 but where the
A[i, j] may only talk to the same S[i]. The process agt(X ,S)
selects an agent from S that instantiates X . Lastly, the process
[x :=τ u] assigns the term u to the variable x typed with τ .

Term variables are bound by input and variable assign-
ment, agent variables are bound by agent selection and names
are bound by name restriction. We say that a process P is
a role of A if all outputs, inputs and name restrictions in P
are done by A and all parametrized names and types in P
contain A as agent.

Example 2. We consider a PKI where agents generate their
own private/public key pair and signing/verification key pair.
They send both public key and verification key to a trusted
server S to be signed. When an agent A wishes to establish a
connection with another agent B, he will send a request to B
along with his own certificate. Upon receiving the certificates

6

of B, A will check that they are signed by the server and
they correspond to the public and verification keys of B. The
role of the agent can be modeled by the following context
process PA[A] where the hole A corresponds to where the
role of A in the composed protocol (e.g. Needham-Schroeder
protocol) will be plugged.

outA(pc[S,A],〈pk(sk[A]),vk(sig[A])〉). Register
inA(pc[S,A],xcert).
[xskA :=sk[A] sk[A]].[xsigA :=sig[A] sig[A]].
outA(c,〈〈request,B〉,xcert〉).inA(c,z). Request
if proj1(check(z,vk(sig[S]))) = B then Check

let y = proj2(check(z,vk(sig[S]))) in
[ypkB :=pk[A,B] proj1(y)].[yvkB :=vk[A,B] proj2(y)]. A Assign

We use the syntax let y = u in P as a syntactic sugar for
P{u/y}. Note that in the registration phase, sk[A] and sig[A]
represent the private and signing keys of A. Since they are
parametrized names, they will remain the same through
any different sessions. Furthermore, an attacker does not
have directly access to them unless A is dishonest. Also
note that the agent A and the server S are communicating
through a parametrised channel pc[S,A] meaning that this
channel is only shared between A and S. After sending its
request to B, the agent A is expecting a message of the
form sign(〈B,〈t1, t2〉〉,sig[S]) where t1 and t2 respectively
correspond to the public and verification key of B. Once
the agent A verifies the signature and the ownership of the
certificate, he assigns the variables accordingly.

The role of the receiver B is very similar to the one of A
and can be modeled by the following context process PB[B].
The process modeling the role of the server registering the
key of an agent A, denoted R(A), is described as follows:

inS(pc[S,A],x).outS(pc[S,A],sign(〈A,x〉,sig[S]))

A complete session of the PKI with a server S between
two agents A and B can thus be modeled by the following
context process P[A, B] = PA[A] | PB[B] | R(A) | R(B).
Furthermore, if we want to model unbounded number of
sessions between honest and dishonest agents, with a unique
trusted server S. It corresponds to the following context
process

!i agt(A,{H[i],D[i]}).! j agt(B,{H[j],D[j]}).P[A, B]

where S,H ∈AH and D ∈AD.

The following example models the well-known Needham-
Schroeder-Lowe protocol [28].

Example 3. Needham-Schroeder-Lowe protocol can be
informally described as follows.

A→ B : {pkA,Na}pkB
B→ A : {pkB,Na,Nb}pkA
A→ B : {Nb}pkB

The following process QA represents the role of the
initiator A in the Needham-Schroeder protocol:

newA na.outA(c,aenc(〈pk(xskA),na〉,xpkB)).inA(c,y).
if na = proj1(proj2(adec(y,xskA))) then
if xpkB = proj1(adec(y,xskA)) then
outA(c,aenc(proj2(proj2(adec(y,xskA))),xpkB))

Note that xskA,xpkB are free in QA. Intuitively, these variables
should be bound by a PKI infrastructure process P that
assigns variables xskA and xpkB respectively with type sk[A]
and pk[A,B] where B is the agent contacted by A.

Definition 1. A configuration is a tuple (E ;P;Φ;σ ; µ)
where:
• E is a set of names that corresponds intuitively to the

private names of the process.
• P is a process where names and variables are bound

only once.
• Φ and σ are both substitutions of term variables to

ground terms. The variables of dom(Φ) do not appear
anywhere else in the configuration.

• µ is a mapping from T to sets of term variables.

The set E represents the set of names that have been
generated by honest agents. The substitution Φ, also called
frame, represents the messages that have been sent on
channels controlled by the attacker (and which the adversary
therefore knows). The substitution σ represents the variables
instantiated so far. Lastly, µ(τ) for some τ is the set of
variables that have been assigned with type τ . We sometimes
write P instead of the initial configuration (/0;P; /0; /0; /0).

The attacker can forge new messages by applying recipes
to his knowledge that is by applying function symbols. He
may also use names, except the names generated by honest
agents. Formally, given a frame Φ and a set E , we define
Recipe(Φ,E) as the set of terms M whose variables are of
the domain of Φ, whose names are not in E ∪N H and that
satisfies Msg(MΦ).

3.3. Semantics

We define the operational semantics of configurations
through a transition relation K →K ′ between configura-
tions. The transition relation is defined by the rules given in
Figure 3. We denote by →∗ the transitive closure of →.

The rules follow the intuition we gave when describing
the grammar of of processes. Note that the rule NEW adds
a name k restricted in newA k.P to the set E only if A is
honest. If A is dishonest, k becomes available to the attacker
(since k /∈ E , it can be freely used in recipes by the attacker).
Also note that the rule ASSIGN augments µ by adding x to
the set µ(τ) of variables of type τ .

Example 4. Consider the process QA of Example 3 repre-
senting the role of the initiator in the Needham-Shroeder
protocol. Recall that xskA and xpkB where free in QA. Assume
that QB is a process representing the role of the receiver
with xskB and xpkA as free variables. The following process

7

(E ;P | outA(c,u).Q;Φ;σ ; µ)→ (E ;P | Q;Φ · {w→ uσ};σ ; µ) (OUT)
if w is fresh, Msg(cσ), Msg(uσ) and ∃M ∈ Recipe(E ,Φ).MΦ↓= cσ↓

(E ;P | inA(c,x).Q;Φ;σ ; µ)→ (E ;P | Q;Φ;σ · {x→ NΦσ}; µ) (IN)
if ∃M,N ∈ Recipe(E ,Φ) s.t. MΦ↓= cσ↓, Msg(cσ)

(E ;P | inA(c,x).Q | outB(d,u).R;Φ;σ ; µ)→ (E ;P | Q | R;Φ;σ · {x→ uσ}; µ) (COMM)
if Msg(cσ), Msg(dσ), Msg(uσ) and cσ↓= dσ↓

(E ;P | if u = v then Q else R;Φ;σ ; µ)→ (E ;P | Q;Φ;σ ; µ) if uσ↓= vσ↓, Msg(uσ), Msg(vσ) (THEN)
(E ;P | if u = v then Q else R;Φ;σ ; µ)→ (E ;P | R;Φ;σ ; µ) if uσ↓ 6= vσ↓ or ¬Msg(uσ) or ¬Msg(vσ) (ELSE)
(E ;P |!i Q;Φ;σ ; µ)→ (E ;P | !i Q | Q{i→ n}ρ;Φ;σ ; µ) (REPL)

if n ∈ N and ρ is a fresh renaming of bound names and variables of Q

(E ;P | newA k.Q;Φ;σ ; µ)→ (E ′;P | Q;Φ;σ ; µ) where E ′ = E ∪{k} if A ∈A H else E ′ = E (NEW)
(E ;P | agt(X ,S).Q;Φ;σ ; µ)→ (E ;P | Q{X → A};Φ;σ ; µ) if A ∈ S (AGENT)
(E ;P | [x :=τ u].Q;Φ;σ ; µ)→ (E ;P | Q;Φ;σ · {x→ uσ}; µ ′) (ASSIGN)

if Msg(uσ), µ ′(τ ′) = µ(τ ′) for τ ′ 6= τ and µ ′(τ) = µ(τ)∪{x}

Figure 3: Semantics of configuration

models an unbounded number of sessions of the Needham-
Schoeder protocol between honest or dishonest agents where
the public keys and private keys are ideally distributed.

!i agt(A,{H[i],D[i]}).! j agt(B,{H[j],D[j]}).(
QA{sk[A]/xskA ,

pk(sk[B]) /xpkB} | QB{sk[B]/xskB ,
pk(sk[A]) /xpkA})

where H ∈AH and D ∈AD.

3.4. Logical formulas

To express security property, we introduce a first order
logic on configurations. It will be particularly convenient
to specify the properties expected from a “good” PKI. We
consider the following atomic formula.
• u = v and u 6= v where u,v are terms
• x $ y and x 6$ y where x,y are term variables
• τ1 = τ2 where τ1,τ2 are parametrized types
• 6`x where x is a term variable

A valuation is a configuration K = (E ;P;Φ;σ ; µ). The
satisfaction relation |=c of atomic formulas is defined as

K |=c x $ y iff x = y
K |=c u = v iff uσ↓= vσ↓
K |=c 6`x iff ∀M ∈ Recipe(E ,Φ).Msg(MΦ)

implies MΦ↓ 6= xσ↓
K |=c τ1 =A τ2 iff ∃γ1,γ2 ∈ T.∃A1, . . . ,An ∈A .

τ1 = γ1[A1, . . . ,An]∧ τ2 = γ2[A1, . . . ,An]

and is lifted as usual to logic formulas with boolean con-
nectors ∧,∨ and universal and existential quantification of
parametrized agent and type variables. Moreover, we consider
universal quantification of term variables over parametrized
type: ∀x ∈ τ.φ with x ∈Xt , τ ∈ T . Its satisfaction relation is
defined as: K |=c ∀x∈ τ.φ iff ∀x∈ µ(τ),K |=c φ . Similarly,
we also consider existential quantification of term variables.

We say that a process P satisfies a formula φ , denoted
P |= φ , if φ holds in an accessible configuration, that is,
K |=c φ for any configuration K such that P→∗ K .

Example 5. Consider a type sk and a process
!i agt(X ,{H[i],D[i]}).P where P contains a single assignment
variable [x :=sk(X) u]. The formula

∀A ∈A H .∀y,z ∈ sk(A).y = z

expresses that any two sessions of some honest agent always
assign x to the same term. Note that the formula does not
say anything about sessions of dishonest agents.

Secrecy. To model secrecy preservation, we consider
an additional type secret, yielding a set of types T that
contains at least {sk,pk,sig,vk,secret}. We assume that
variables that should remain confidential are assigned the
type secret. Then secrecy can be generically defined by
the following formula φsec.

∀τ ∈ secretH .∀x ∈ τ. 6`x

This formula states that any variable of type secretA for A
honest should not be deducible (for any of its instantiations).

Example 6. Continuing Example 3, we can require secrecy
of the nonce na generated by A and the nonce nb as received
by A by simply modifying process QA as follows.

newA na.[z :=secret[A,B] na].
outA(c,aenc(〈pk(xskA),na〉,ypkB)).in.(c,y)
if na = proj1(proj2(adec(y,xskA))) then
if ypkB = proj1(adec(y,xskA)) then
[z′ :=secret[A,B] proj2(proj2(adec(y,xskA)))].
outA(c,aenc(proj2(proj2(adec(y,xskA))),ypkB))

Authentication. In the literature, authentication properties
are usually modeled using events. In our formalism, variables
assignments can play such a role. Consider for example
two types ev1 and ev2 contained in T . The authentication
property modeling a correspondence between the two types
can be defined by the following formula φauth.

∀τ ∈ ev1H .∀x ∈ τ.∃τ ′ ∈ ev2H .∃y ∈ τ
′.τ =A τ

′∧ x = y

8

Informally, the formula indicates that whenever a variable
x of type ev1[A1, . . . ,An] is assigned a term with honest
agents A1, . . . ,An then there exists a variable y of type
ev2[A1, . . . ,An] must have been assigned previously with the
same term. We could also consider injective authentication
by further requiring the variable y to be unique, which can
be expressed by ∀z ∈ τ ′.y 6= z∨ y $ z.

Example 7. Continuing Example 3, authentication can be
expressed through φauth and adding in QA the assignment
[x :=ev2[A,B] 〈nA,proj2(proj2(adec(y,xskA)))〉] and similarly
in QB but with the type ev1.

Composable properties. In this paper, we will show that
our composition result preserves any composable property,
that is, a closed formula from our logic where quantification
of agents are over honest agents, i.e. of the form ∀A ∈ S and
∃A ∈ S with S⊆A H , and where any atomic formula u = v
and u 6= v involves only variables (u,v ∈X).

4. Composition hypotheses

In this section we formalize the hypothesis that underlie
our composition theorem. Since the development is rather
technical we include here a small roadmap for this section.
We begin (Section 4.1) with formalizing the guarantees that
we view as minimal for any PKI as sketched in Section 2.1.
Next, in Section 4.2, we formalize the composition of an
arbitrary PKI protocol P with an arbitrary other protocol
Q. Most of the development here consists of syntactical
restrictions which essentially force that the composition
between protocol P and Q.

The rest of the section deals with more subtle interactions
between P and Q. In Section 4.3 we explain how to deal with
private keys: they should only be used as key material in
cryptographic algorithms and, if sent as payload, they should
be tagged. We discuss in Sections 4.3 and 4.4 two distinct
approaches to ensure that the use of common primitives
does not lead to unwanted interference between the two
composed components. Our theorem can employ either of
the two approaches.

We discuss each of the more subtle hypothesis that we
require through the prism of an example that motivates it.
For simplicity, both the discussions and the formalism that
we develop in this paper consider the case of two party
protocols; our results can be lifted to n-party protocols.

4.1. PKI properties

We consider PKIs that establish keys both for encryption
and signatures. We model these types of keys through a set
T of types for assignment variables that includes the types
sk,pk,sig and vk respectively for asymmetric private keys,
asymmetric public keys, signing keys, and verification keys.
Agents do not necessarily share the same values for keys,
in particular, an agent A may think that C’s public key is
pkC while B believes that C’s public key is pkC′. We do
not want to discard this possibility (since as discussed in
Section 2.5, this is a possible attack against a PKI). We

model this possibility using our notion of parametrized types.
Specifically, we consider types of the form sk[A], pk[A,B],
sig[A] and vk[A,B] where pk[A,B] (resp. vk[A,B]) repre-
sents the asymmetric public (resp. verification) key of B as
viewed by A.

As stated in Section 2.1, we informally demand that a
PKI satisfies the following properties.
• An honest agent has a unique public/private key pair and

a unique verification/signing key pair.
• Honest agents of course have pairwise distinct pri-

vate/signing keys.
• Keys are consistently distributed, that is, honest agents

know each other’s public and verification keys.
• Private/signing keys of honest agents are indeed private.

For asymmetric encryption keys, these properties are cap-
tured through the formula φasy below. Each line corresponds
to a bullet above.

φasy =̂ ∀A,B ∈A H .∀x,y ∈ sk[A].x = y
∧∀x ∈ sk[A].∀y ∈ sk[B].A = B∨ x 6= y)
∧∀x ∈ sk[A].∀y ∈ pk[B,A].pk(x) = y)
∧∀x ∈ sk[A]. 6`x)

We model the analogous property of a good PKI w.r.t.
signing/verification keys with a formula φsig obtained from
φasy by replacing sk, pk and pk respectively by sig, vk
and vk.

Finally, the overall guarantee that a PKI should offer
are the two properties above together with the requirement
that the keys used for signing/verification are different from
those used for encryption/decryption:

φPKI =̂φasy∧φsig∧∀A,B∈A H .∀x∈ sk[A].∀y∈ sig[B].x 6= y

The last part of φPKI indicates that signing keys and private
asymmetric keys should be pairwise distinct.

Example 8. Consider the PKI protocol modeled by the
process P in Example 2. The protocol satisfies our security
requirement: C[P[0,0]] |= φPKI where C[] is the context
!i agt(A,{H[i],D[i]}).! j agt(B,{H[j],D[j]}). that declares
the agents.

4.2. Composition Setup

In the previous section we introduced the security guar-
antee which we require from protocol P (when analyzed
in isolation). From this point onwards we consider the
interaction between P and Q. We start by defining the
composition between a PKI protocol P and an arbitrary
protocol Q. Formally, we first consider a process P[A, B]
representing a PKI protocol that establishes long term keys
for two agents A and B. Second, we consider two processes
QA and QB modeling the roles of a two-agents protocol Q
in which keys are assumed to be already distributed. Our
goal is to identify on which conditions on P and Q their
combination remains secure. Formally, the combination of
Q using the PKI P is expressed by the following process.

!i agt(A,{H[i],D[i]}).! j agt(B,{H[j],D[j]}).P[QA,QB]

9

This process models an unbounded number of sessions
between honest and dishonest agents.

Since we consider two-agent protocols, we assume w.l.o.g.
the following properties on P and Q.
H1. xskA,ypkB,xsigA,yvkB are the only possible free variables

of QA, QA is a role of A and the hole A in P
is in the scope of [xskA :=sk[A] u], [ypkB :=pk[A,B] v],
[xsigA :=sig[A] w], [yvkB :=vk[A,B] r] for some u,v,w,r.
We require the analogous hypothesis for QB and B.
Moreover, the sets of bound names and free names in
P and Q are distinct.

This hypothesis simply formalises the setting and ensures
that the process P[QA,QB] avoids name clashes and is closed,
meaning that the free variables of QA and QB will be
instantiated.

Moreover, we demand that the only shared keys are
those that the PKI protocol P generates and passes to Q.
Both protocols may generate other keys, but these cannot be
shared. In particular, P and Q may not share long term keys.
H2. for all n[A1, . . . ,Ap] ∈ pn(P[A, B]), for all

m[B1, . . . ,Bq] ∈ pn(Q1,Q2), n 6= m.

4.3. Tagging

As discussed in Section 2, a PKI infrastructure and a
protocol Q do not immediately yield a secure composition.
We first need to get rid of the behaviors explained in

Section 2.2 where the PKI infrastructure P intereferes with
a protocol Q as they use the same primitives and the same
keys.

Similarly to the approach of Arapinis, Cheval, and
Delaune [3] we consider a setting where P and Q may
use arbitrary primitives, except for the shared ones, that
should be the standard primitives. Formally, we consider the
following common signature F 0 = F 0

c]F 0
d where F 0

d =
{sdec/2, rsdec/2,adec/2, radec/3,check/2,proj1/1,proj2/1}
and F 0

c = {senc/2, rsenc/3,aenc/2, raenc/3,pk/1,sign/2,
vk/1,〈〉/2,h/1}. The associated rewriting system R0 has
been defined in Example 1.

We also consider two disjoints signatures for P and
Q, namely F P,F Q, as well as their associated rewriting
systems RP,RQ and equational theories EP,EQ.

4.3.1. Tagging of private keys. We first need to guarantee
that Q does not manipulare the structure of private keys,
to avoid the “related keys” example of Section 2.6. Such
related keys will be tolerated under the condition that Q
never “opens” a private keys nor sends them as payload
unless they are tagged (in principle, private keys should
not be sent in payload anyway). Formally, assume that F Q

contains two function symbols tagk and untagk such that
untagk(tagk(x))→ x ∈RQ and tagk,untagk do not appear
in any other rewrite rules in RQ or in EQ. The next hypothesis
states how private keys are tagged when used as payload:
H3. Process P[A, B] is built over F P∪F 0, process QA,QB

are built over F Q ∪F 0 \ {untagk} and in QA and
QB, the private and signing keys provided by the PKI

can only be used in key position with adec, radec,sign
respectively or as the argument of tagk.

4.3.2. Tagging processes. As illustrated in Section 2.2,
primitives shared between P and Q should be tagged. For
instance, tagging an encryption senc(u,k) may be done by
encrypting u alongside some constant t, i.e. senc(〈t,u〉,k). As
for the tags on private keys, we do not wish to specify exactly
how tags are implemented. Therefore, for all i ∈ {P,Q}, we
assume the existence of two function symbols tagi and untagi
such that untagi(tagi(x))→ x ∈RQ and tagi,untagi do not
appear in any other rewrite rules in R i or in Ei.

Definition 2 (Tagged terms and processes). Let i ∈ {P,Q}.
We define the set of i-tagged terms, denoted TAGT(i), as
the smallest set of term built on F i∪F 0 such that for all
u1, . . . ,un ∈ TAGT(i), for all f/n ∈F i∪F 0,
• u ∈ TAGT(i) if u ∈N ∪N ∪Xt
• untagi(f(u1, . . . ,un))∈ TAGT(i) if f ∈ {sdec,adec, rsdec,
radec,check}

• f(tagi(u1),u2, . . . ,un) ∈ TAGT(i) if f ∈ {senc,aenc,
rsenc, raenc,sign}

• f(u1, . . . ,un) ∈ TAGT(i) when f ∈ {h,〈 〉,proj1,proj2,
vk,pk}∪F i \{untagi}

A process is said to be i-tagged if for all terms u contained
in an action of the process (i.e. input, output, conditional
and variable assignment), u ∈ TAGT(i).

We can now state our condition for tagged processes:
C1. P[A, B] is P-tagged and QA,QB are Q-tagged

4.4. Disjoint public keys

Considering tagged protocols P and Q is an efficient
way to ensure that honest agents do not confuse messages
from P with messages from Q. While simple, such a tagging
assumption is rarely met in practice. Even simple protocols
such as the Needham-Schroeder-Love protocol would not
be covered by our composition result. We propose here an
alternative assumption that is best explained going back to
the example described in Section 2.2 where the executions
of P and Q may interfere with each other. To avoid such
interferences, we need to make sure that the set of keys that
are used for encryption and signatures in P is disjoint from
the set of keys used in Q. Such a condition may however
be difficult to check. We therefore formulate a stronger
assumption, usually met in practice.

Specifically, we assume that the only public/private keys
dynamically generated by P and Q are those passed from P
to Q. This assumption is often met in practice, e.g. for our
NSL example. This is informally stated as follows.
C2. All terms in P[A, B] used in key positions w.r.t. F 0

are ground, that is, P only uses keys known in advance.
C3. All terms in QA,QB used in key positions w.r.t.

F 0 are either ground and disjoint from the
terms in P[A, B] used in key positions w.r.t. F 0

or in {xskA,ypkB,xsigA,yvkB,xskB,ypkA,xsigB,yvkA}. Sim-
ilarly, Q uses only known keys or keys from P.

10

Note that these assumptions only restrict keys used in the
common signatures. P and Q may of course freely create
keys provided they use a different encryption/signing scheme.

It then remains to ensure that the keys established by
P (and therefore shared with Q) are distinct from the other
keys used by P. This property can be expressed in our
logic by considering a special type test ∈ T , and a process
P′ obtained from P by adding assignments of the form
[x :=test t] where x a fresh variable, for any t appearing in
P as key position w.r.t. the common signature F 0. None
of these shared terms should collide with the PKI keys
established by P.
C4. P′ |= ∀x ∈ test.∀y∈ skH .∀z∈ sigH .x 6= y∧x 6= z∧x 6=

pk(y)∧ x 6= vk(z).

Example 9. Continuing Example 2, the only keys used in key
position are sig[S] (in the role of the server) and vk(sig[S])
(when A and B check the certificates). Since none of these keys
is freshly bound, the process P′[A, B] can simply be the
process P[A, B] | [z1 :=test sig[S]] | [z2 :=test vk(sig[S])].
Moreover, it is easy to show that no honest agent can be
assigned the public key nor the verification key of the server,
meaning that P[A, B] satisfies the condition C4.

As previously mentioned, to ensure secure composition,
we need either our protocols to verify the disjoint-keys
hypotheses or the tagging hypotheses. Therefore, we can
state the following hypothesis that gathers both cases:
H4. either condition C1 holds or conditions C2, C3 and C4

hold.

5. Composition results

The previous section lists necessary assumptions to avoid
interferences between a PKI protocol P and a subsequent
protocol Q. We are therefore ready to state our result: if Q
is secure and if P is a good PKI then Q may securely use
P for the establishment of its keys. In fact, we note that
such a composition result (still) does not hold in general
since a good PKI provides weaker guarantees than an ideal
distribution of the keys as usually assumed in the analysis of
Q as exemplified in Section 2. We therefore need to introduce
a more permissive Q which is the final ingredient to our
main composition result.

5.1. Permissive Q

Our “confusing material” example in Section 2.3 shows
that Q should be analysed without assuming dishonest keys to
be honestly generated and distributed. Instead, a permissive
Q should be considered, where dishonest keys are simply
provided by the attacker. The goal of this section is to
formally define permissive Q. We assume d ∈N to be a
fresh public channel (that is, a name not used elsewhere)
and that the names sk and sig do not occur in QA and QB.

Recall that Q = QA | QB and xskA,ypkB, . . . are the only
possible free variables of Q (cf H1). The ideal instan-
tiation of the private variables and public variables of

an agent A are σ
priv
A = {sk[A]/xskA ,

sig[A] /xsigA} and σ
pub
B =

{pk(sk[B])/ypkB ,
vk(sig[B]) /yvkB} respectively. Similarly, we define

σ
priv
B and σ

pub
A . However, if A is dishonest, he should be able

to chose his public and verification keys freely, i.e., they are
under the control of the attacker. Formally, we define
• IpubA [] = inB(d,ypkA).inB(d,yvkA).

• IpubB [] = inA(d,ypkB).inA(d,yvkB).

In the previous section, we stated all the hypotheses that
we rely on to ensure a secure composition between the PKI
P and the protocol Q. For our first main result, we consider
that a permissive Q satisfies the secrecy property.

Permissive Q is the protocol Q where honest keys are
ideally distributed (and private keys remain private) while
dishonest ones are under the control of the attacker.

Definition 3 (Permissive Q). Let Q = QA | QB be a process
satisfying assumptions H1 and H2. We define permissive Q,
denoted Qperm, as the following process:

!i agt(A,{H[i]}).! j agt(B,{H[j]}).
(OA[QA]σ

priv
A σ

pub
B | OB[QB]σ

priv
B σ

pub
A)

|!i agt(A,{D[i]}).! j agt(B,{H[j]}).IpubA [OB[QB]]σ
priv
B

|!i agt(A,{H[i]}).! j agt(B,{D[j]}).IpubB [OA[QA]]σ
priv
A

where OA[] = outA(d,〈pk(xskA),ypkB,vk(xsigA),yvkB〉).
[z1 :=secret[A] xskA].[z2 :=secret[A] xsigA]. with z1,z2 fresh
and similarly for OB[].

The process OA[] simply outputs the public keys of A
and B as viewed by A and indicates that the private keys of A
should stay secret, and similarly for OB[]. The first part of
Qperm corresponds to sessions between honest agents, where
all keys are ideally distributed while the second (resp. third)
part of Qperm corresponds to sessions between an honest B
(resp. A) and a dishonest A (resp. B).

If permissive Q is secure, then Q can safely be composed
with a good PKI.

Theorem 1. Let P[A, B] be a context process and Q = QA |
QB be a process such that P and Q satisfy hypotheses H1
to H4. Let φ be a composable property.

If the following conditions are satisfied
• !i agt(A,{H[i],D[i]}).! j agt(B,{H[j],D[j]}).

P[OA,OB] |= φPKI (that is, P is a secure PKI)
• Qperm |= φsec∧φ (that is, Q is a secure protocol)

then P[QA,QB] is secure, that is

!i agt(A,{H[i],D[i]}).! j agt(B,{H[j],D[j]}).P[QA,QB] |= φ

where φsec =̂∀τ ∈ secretH .∀x ∈ τ. 6`x.

Sketch of proof. A complete version of the proof can be
found in [1]. The first step of the proof is quite stan-
dard w.r.t. existing composition results. It is well known
that reachability properties compose well when processes
do no share any secret. Hence from our hypothesis H2,
we obtain that C[P[OA,OB]] | Qperm |= φsec where C[] =
!i agt(A,{H[i],D[i]}).! j agt(B,{H[j],D[j]}). . From there,
we reason by contradiction. If C[P[QA,QB]] 6|= φsec then it is
easy to see that C[P[OA[QA],OB[QB]]] 6|= φsec since OA and

11

OB are just outputs. Applying the same reasoning with fresh
inputs, we can build two processes Rreal and Rperm such that
• C[P[QA,QB]] 6|= φsec implies Rreal 6|= φsec
• C[P[OA,OB]] | Qperm |= φsec implies Rperm |= φsec

Intuitively, Rreal and Rperm only differ by the messages in
the process. For example, any occurrence of a variable xskA
of an honest agent A in Rreal corresponds to an occurrence
of sk[A] at the same position in Rperm. The key part of
the proof (and the main difficulty) consists in showing that
Rreal 6|= φsec in fact implies Rperm 6|= φsec. For this, we consider
a transformation δ on terms whose purpose is to dynamically
replace the occurrences of the instantiation of xskA, xsigB, etc
in a configuration of Rreal by their counterpart in Rperm. In
particular we show that
• for any configuration Rreal →∗ (E ;P;Φ;σ ; µ), we have

Rperm→∗ (E ;P;δ (Φ);δ (σ);δ (µ))
• (E ;P;Φ;σ ; µ) |=c `u implies
(E ;P;δ (Φ);δ (σ);δ (µ)) |=c `δ (u).

This proof technique is similar to the work in [20], [19],
[3]. However, we improve over this previous work by
relaxing the tagging condition. Interestingly, our core result is
general enough to captures both the tagging and the disjoint
key conditions in a single result. Moreover, we no longer
assume restriction on the form of the shared keys (signing,
verification, private and public keys), in contrast to e.g. [3]
where private keys are assumed to be nonces.

Note that we require P[OA,OB] to satisfy φPKI and not
just P. This is because we need to make sure that P remains
a secure PKI even when the public keys are indeed public.

Interestingly, the permissive version of a protocol can
easily be encoded and analysed in ProVerif. This is the first
lesson learned from our work: if you wish to analyze a
protocol Q independently of the underlying PKI, you should
analyze permissive Q instead of the ideal (standard) Q. As
we shall see in the next section, it may be sufficient to
analyse the ideal version of Q, at the price of additional
assumptions on either P or Q.

5.2. Composition with an “ideal Q”

As far as we know, in symbolic models protocols are
never analyzed in their “permissive” version. Instead, all
existing libraries consider all keys to be properly generated
and distributed, including those of dishonest parties. We
will say that libraries consider ideal protocols. As illustrated
by our “confusing material” example in Section 2.3, such
ideal protocols are indeed too abstract and may be flawed
when used in conjunction with a true PKI. So a natural
question arrises: what about the hundreds of protocols that
have already been analyzed? Should all these analysis start
over? In this section, we study under which conditions it
is sufficient to analyze an ideal protocol Q. Clearly, secure
composition requires to a corresponding strenghtening of the
guarantees of the PKI.

We first define formally “ideal Q”. It consists of the
protocol Q where all keys are ideally distributed.

Definition 4 (Ideal Q). Let Q = QA | QB be a process
satisfying assumptions H1 and H2. We define ideal Q, denoted
Qideal , as the following process:

!i agt(A,{H[i],D[i]}).! j agt(B,{H[j],D[j]}).
(OA[QA]σ

priv
A σ

pub
B | OB[QB]σ

priv
B σ

pub
A)

where OA[],OB[],σpriv
A ,σpriv

B σ
pub
A σ

pub
B have been defined

in Section 5.1.

Process QA is instantiated by the expected private keys
σ

priv
A and public keys σ

pub
B of B and similarly for QB.

5.2.1. Tagged public keys. As illustrated by our “confusing
material” example in Section 2.3, when public keys are
used as payload, they may interfere with other parts of the
protocol. To avoid such intereferences, we need public keys
to be “isolated”. So, similarly to the case of private keys
(Assumption H9), we now require that public keys used as
payload are isolated within a tag. We further require that only
PKI keys may be used for asymmetric encryption/decryption
in Q. This is more formally stated as follows.
H5. In the processes QA and QB, the public and verification

keys provided by the PKI can only be used in key
position with aenc, raenc,check respectively or below
a tag tagk. Moreover, only the private, public, signing,
verification keys provided by the PKI can be used in
key position with the common signature or below a tag
tagk.

Such an assumption is trivially satisfied when public keys
are not used as payload but only for encryption. However,
a lesson learned from our analysis is that for protocols that
use public key as payloads then either permissive Q should
be analyzed or tagging public keys is necessary.

5.2.2. Ideal PKI. Even if public keys are properly used
in Q, the attacker can control dishonest public keys and
interferes with Q’s behavior, as exemplified in Section 2.5
where we show unexpected behaviors if honest agents do
not share the same view of dishonest keys. Therefore, we
consider an additional property which ensures that public
and verification keys of dishonest agents are consistently
distributed among honest agents. This is formally captured
by formula φideal as follows.

φideal =̂ ∀A,B ∈A H .∀C,D ∈A .
∀x ∈ pk[A,C].∀y ∈ pk[B,D].C = D⇔ x = y

∧ ∀x ∈ vk[A,C].∀y ∈ vk[B,D].C = D⇔ x = y
∧ ∀x ∈ pk[A,C].∀y ∈ vk[A,C].x 6= y

The first line ensures that all agents share the same public
key for a given agent C and that conversely, public keys of
distinct agents are pairwise distinct. The second lines states
the same property for verification keys. Finally, public and
verification keys should of course be distinct.

Such strong guarantees are typically met when public
keys are issued by a (trusted) authority, for example a
governmental agency that issues electronic IDs.

12

The next theorem establishes that analysis of the ideal
version of a protocol Q still enables secure composition with
a PKI protocol P, provided that P satisfies φPKI and φideal .

Theorem 2. Let P[A, B] be a context process and Q = QA |
QB be a process such that P and Q satisfy hypotheses H1
to H5. Let φ be a composable property.

If the following conditions are satisfied
• C[P[OA,OB]] |= φPKI∧φideal (that is, P is an ideal PKI)
• Qideal |= φsec∧φ (that is, Q is an ideal secure protocol)

then P[QA,QB] is secure, that is C[P[QA,QB]] |= φ where
C[] = !i agt(A,{H[i],D[i]}).! j agt(B,{H[j],D[j]}). .

Sketch of proof. We first apply the transformation as in
Theroem 1, constructing two processes Rreal and Rperm such
that Rreal 6|= φsec implies Rperm 6|= φsec. The second step of
the proof consists in building a third process Rideal such that
C[P[OA,OB]] |Qideal |= φsec implies Rideal |= φsec. Intuitively,
any occurence of a variable ypkA of a dishonest agent A in
Rperm corresponds to an occurence of pk(sk[A]) at the same
position in Rideal . We conclude by showing that Rperm 6|= φsec
implies Rideal 6|= φsec.

6. Conclusion

Standalone analysis of protocols that rely on long term
asymmetric keys typically assumes idealized key distribu-
tion through some PKI. Yet, this property is not naturally
guaranteed by standard PKIs. We have therefore initiated a
study of the conditions under which the composition of PKIs
(for both asymmetric encryption and digital signatures) with
arbitrary protocols that require such keys yields a secure
system.

We have shown that this is possible through modular
analysis which considers the two protocols separately and
requires minimal, easy to implement and verify conditions
on how the two components of the composition interact. In
short, we have identified several useful recommendations.
To deal with the weaker guarantees offered by PKIs, the
permissive version of the protocol that uses PKI keys should
be analyzed rather than its ideal version. In addition, to
eliminate unwanted interference between the two components
of the composition the protocols should not share any keys
(beyond those that the PKI distributes). In fact, standards
already suggest that this should be the case – our analysis
confirms that this guarantee helps guarantee the desired
composability between protocols. Finally, we have shown
that under some conditions, security analysis of protocols
that assumes idealized key distribution is sound if the PKI
also guarantees a consistent distribution of dishonest keys.

Even if most our counter-examples to composition are
contrived, the lesson learned from our study is that the
properties offered by a typical PKI provide less guaranties
than what is typically expected by a protocol using a PKI.
When designing a PKI, it is difficult, if not impossible, to
predict how it will be used in subsequent protocols. It is
therefore important to strengthen it as much as possible
and our property φideal provides some guidance for this.

Conversely, when analyzing a protocol that assumes a PKI,
it is tempting to abstract the PKI in a too simple way. We
provide here a sound abstraction that can be used in tools
like ProVerif.

In our study, we also identified several cases where com-
position is not secure, and provided examples. Some of these
examples are contrived. As future work, we plan to explore
whether real case protocols cannot indeed be composed,
or alternatively, identify why “realistic” examples do not
run into the same issues and formalize the corresponding
theorems.

Much of the work set within computational models
assumes a PKI that provides keys to parties but is not
concerned with the details of how public keys are generated
and distributed. Unsurprisingly, our negative results set within
symbolic models also hold in such models. A fascinating
question is whether in such models, positive results analogous
to those we present here are possible. As outlined in the
section on related work, existing results make unrealistic as-
sumptions on PKI procedures (i.e. that they use a concurrently
secure zero-knowledge proofs of knowledge). In turn, this
assumptions can be traced to the simulation-based paradigm
which facilitate general composition results. An interesting
avenue for future research is to consider other definitional
paradigms (e.g. cryptographic games) where less general
composition results but with more realistic assumptions on
the components are possible [13], [11], [32].

Acknowledgments

This work has been partially supported by the European
Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation program (grant agreement
No 645865-SPOOC).

References

[1] Secure composition of pkis with public key protocols. https://members.
loria.fr/VCheval/files/CCW-csf17.pdf.

[2] M. Abadi and C. Fournet. Mobile values, new names, and secure
communication. In Proc. of the 28th ACM Symposium on Principles of
Programming Languages (POPL’01), pages 104–115, January 2001.

[3] Myrto Arapinis, Vincent Cheval, and Stéphanie Delaune. Composing
security protocols: from confidentiality to privacy. In Proceedings
of the 4th International Conference on Principles of Security and
Trust (POST’15), Lecture Notes in Computer Science. Springer Berlin
Heidelberg, April 2015.

[4] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna,
J. Cuellar, P. Hankes Drielsma, P.-C. Héam, O. Kouchnarenko,
J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch,
J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The AVISPA
Tool for the automated validation of internet security protocols and
applications. In 17th International Conference on Computer Aided
Verification, CAV’2005, volume 3576 of Lecture Notes in Computer
Science, pages 281–285. Springer, 2005.

[5] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass.
Universally composable protocols with relaxed set-up assumptions.
In Proceedings of the 45th Annual IEEE Symposium on Foundations
of Computer Science, FOCS ’04, pages 186–195. IEEE Computer
Society, 2004.

13

[6] Bruno Blanchet. An efficient cryptographic protocol verifier based on
prolog rules. In Proc. CSFW’01, 2001.

[7] Florian Bohl and Dominique Unruh. Symbolic universal composability.
In Proceedings of the 2013 IEEE 26th Computer Security Foundations
Symposium, CSF ’13, pages 257–271. IEEE Computer Society, 2013.

[8] Alexandra Boldyreva, Marc Fischlin, Adriana Palacio, and Bogdan
Warinschi. A closer look at PKI: security and efficiency. In Public
Key Cryptography - PKC 2007, 10th International Conference on
Practice and Theory in Public-Key Cryptography, April 16-20, 2007,
Proceedings, pages 458–475, 2007.

[9] Colin Boyd, Cas Cremers, Michele Feltz, Kenneth G. Paterson,
Bertram Poettering, and Douglas Stebila. ASICS: authenticated key
exchange security incorporating certification systems. In Computer
Security - ESORICS 2013 - 18th European Symposium on Research
in Computer Security, September 9-13, 2013. Proceedings, pages
381–399, 2013.

[10] Christina Brzuska, Marc Fischlin, Nigel P. Smart, Bogdan Warinschi,
and Stephen C. Williams. Less is more: relaxed yet composable
security notions for key exchange. Int. J. Inf. Sec., 12(4):267–297,
2013.

[11] Christina Brzuska, Marc Fischlin, Nigel P Smart, Bogdan Warinschi,
and Stephen C Williams. Less is more: Relaxed yet composable
security notions for key exchange. International Journal of Information
Security, 12(4):267–297, 2013.

[12] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C.
Williams. Composability of bellare-rogaway key exchange protocols.
In Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS 2011, October 17-21, 2011, pages
51–62, 2011.

[13] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C
Williams. Composability of bellare-rogaway key exchange protocols.
In Proceedings of the 18th ACM conference on Computer and
communications security, pages 51–62. ACM, 2011.

[14] Jan Camenisch, Robert R. Enderlein, Stephan Krenn, Ralf Küsters, and
Daniel Rausch. Universal composition with responsive environments.
In Advances in Cryptology - ASIACRYPT 2016 - 22nd International
Conference on the Theory and Application of Cryptology and Infor-
mation Security, December 4-8, 2016, Proceedings, Part II, pages
807–840, 2016.

[15] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In 42nd Annual Symposium on Foundations of
Computer Science, FOCS 2001, 14-17 October 2001, pages 136–145,
2001.

[16] Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses Liskov,
Nancy A. Lynch, Olivier Pereira, and Roberto Segala. Time-bounded
task-pioas: A framework for analyzing security protocols. In DISC,
volume 4167 of Lecture Notes in Computer Science, pages 238–253.
Springer, 2006.

[17] Vincent Cheval, Véronique Cortier, and Eric le Morvan. Secure
Refinements of Communication Channels. In 35th IARCS Annual
Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2015), volume 45 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 575–589. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2015.

[18] Céline Chevalier, Stéphanie Delaune, Steve Kremer, and Mark D.
Ryan. Composition of password-based protocols. Formal Methods in
System Design, 43(3):369–413, 2013.

[19] Ştefan Ciobâcă and Véronique Cortier. Protocol composition for
arbitrary primitives. In Proceedings of the 23rd IEEE Computer
Security Foundations Symposium (CSF’10), pages 322–336. IEEE
Computer Society Press, July 2010.

[20] Véronique Cortier and Stéphanie Delaune. Safely composing security
protocols. Formal Methods in System Design, 34(1):1–36, February
2009.

[21] Cas Cremers. The Scyther Tool: Verification, falsification, and
analysis of security protocols. In Computer Aided Verification, 20th
International Conference, CAV 2008, Proc., volume 5123/2008 of
Lecture Notes in Computer Science, pages 414–418. Springer, 2008.

[22] Stéphanie Delaune, Steve Kremer, and Olivier Pereira. Simulation
based security in the applied pi calculus. In IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2009, December 15-17, 2009, pages 169–180, 2009.

[23] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Handbook of
Theoretical Computer Science, volume B, chapter 6, pages 243–320.
Elsevier,, 1990.

[24] Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish.
Composability and on-line deniability of authentication. In Proceed-
ings of the 6th Theory of Cryptography Conference on Theory of
Cryptography, TCC ’09, pages 146–162, Berlin, Heidelberg, 2009.
Springer-Verlag.

[25] Thomas Gibson-Robinson, Allaa Kamil, and Gavin Lowe. Verifying
layered security protocols. Journal of Computer Security, 23(3), 2015.

[26] Dennis Hofheinz, Eike Kiltz, and Victor Shoup. Practical chosen
ciphertext secure encryption from factoring. J. Cryptology, 26(1):102–
118, 2013.

[27] Ralf Kusters. Simulation-based security with inexhaustible interactive
turing machines. In Proceedings of the 19th IEEE Workshop on Com-
puter Security Foundations, CSFW ’06, pages 309–320, Washington,
DC, USA, 2006. IEEE Computer Society.

[28] G. Lowe. Breaking and fixing the Needham-Schroeder public-key
protocol using FDR. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’96), volume 1055 of LNCS, pages
147–166. Springer-Verlag, march 1996.

[29] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The
TAMARIN Prover for the Symbolic Analysis of Security Protocols.
In Computer Aided Verification, 25th International Conference, CAV
2013, Proc., volume 8044 of Lecture Notes in Computer Science,
pages 696–701. Springer, 2013.

[30] Sebastian Moedersheim and Luca Viganò. Sufficient conditions for
vertical composition of security protocols. In ASIACCS, pages 435–
446, 2014.

[31] Birgit Pfitzmann and Michael Waidner. Composition and integrity
preservation of secure reactive systems. In CCS 2000, Proceedings of
the 7th ACM Conference on Computer and Communications Security,
November 1-4, 2000., pages 245–254, 2000.

[32] Thomas Shrimpton, Martijn Stam, and Bogdan Warinschi. A modular
treatment of cryptographic apis: The symmetric-key case. In Annual
Cryptology Conference, pages 277–307. Springer, 2016.

Appendix A.
Some more examples

A.1. Continuing Example 2

We explain here in more details why the PKI protocol
presented in Example 2 is indeed secure.

Example 10 (Example 8 continued). Continuing
Example 2, if we denote C[] the context
!i agt(A,{H[i],D[i]}).! j agt(B,{H[j],D[j]}). that declares
the agents then we have C[P[0,0]] |= φPKI. Consider
φasy (φsig being symmetrical). We can first notice that
in P[A, B], the only assignments of type sk are
[xskA :=sk[A] sk[A]] and [xskB :=sk[B] sk[B]]. Hence for all
C[P[0,0]]→∗ (E ;P;Φ;σ ; µ), given an honest agent H[i], a
variable x ∈ µ(sk[H[i]]) will necessarily be instantiated

14

by sk[H[i]] hence ensuring that C[P[0,0]] models the first
conjunct of φasy, i.e.,

C[P[0,0]] |= ∀A ∈A H .∀x,y ∈Xt .(x,y∈sk[A]⇒ x = y)

Similarly, considering that sk[A] = sk[B] if and only if A 6= B,
C[P[0,0]] models the second conjunct of φasy. The fourth
conjunct is intuitively satisfied since the secret keys are
never sent in plain text.

The third conjunct is less obvious than the previous
ones. Intuitively, it relies on the fact that we assumed the
server trusted, i.e. S ∈AH . As such, the channel pc[S,H[i]]
will remain unaccessible to the attacker and in particular
only known between S and H[i]. Thus, during the registration
phase, it ensures that the variable xcert will be instantiated by
the signature sign(〈H[i],〈pk(sk[H[i]]),vk(sig[H[i]])〉〉,sig[S]).
Moreover, only the server signs with sig[S] and it is al-
ways on messages of the form 〈A,〈t1, t2〉〉 where A is the
agent with whom he communicates. Thus, even if A is
dishonest, e.g. A = D[j] for some j, then the signature
he will get from the server will necessarily be of the
form sign(〈D[i],〈t1, t2〉〉,sig[S]) which cannot be confused
with sign(〈H[i],〈pk(sk[H[i]]),vk(sig[H[i]])〉〉,sig[S]). Thus,
the honest agent H[j] checking the identity of the certificate
supposedly coming from the honest agent H[i], e.g. the
conditional “if proj1(check(z,vk(sig[S]))) = B then” in the
process PA[A], is guaranteed that his assignment variable
of type pk[H[j],H[i]] will be instantiated by pk(sk[H[i]]).

Note that even though φasy only focuses on the honest
agent, it is important to also reason about the certificates
that dishonest agents can obtain. Indeed, consider a loose
PKI that could provide certificates with two different formats,
e.g., for different protocols: sign(〈A,〈pk,vk〉〉,sig[S]) and
sign(〈vk,〈pk,A〉〉,sig[S]). An attacker could then sends to the
server 〈pk(D[j]),H[i]〉 through the channel pc[S,D[j]] and
obtain the certificate sign(〈H[i],〈pk(D[j]),D[j]〉〉,sig[S]). An
honest agent receiving such certificate would then assume
that pk(D[j]) is the public key of H[i].

The following example illustrates why a (contribed) PKI
could be secure w.r.t. φPKI while its security breaks as soon
as the public keys are revealed.

Example 11. Consider a mock PKI P[A, B] =̂R(A,B) |
R(B,A) | PA[] | PB[] where R(A,B) and PA[] are defined
as follows :

R(A,B)=̂ inS(c,z).if z = pk(sk[B]) then
newS k.outS(pc[S,A],〈sk[A],pk(k)〉).
outS(c,sk[B])

else outS(pc[S,A],〈sk[A],pk(sk[B])〉)

PA[] =̂ inA(pc[S,A],y).[xskA :=sk[A] proj1(y)].
[ypkB :=pk[A,B] proj2(y)]

The processes R(B,A) and PB[] are defined analogously.
Intuitively, the server is expected to send to the agents private
and public keys of the form sk[A] and pk[B]. However, when
A wants to get his private key and the public key of B, the
server will first check whether the agent already knows the

public key pk(sk[B]). If so, we will send to A a fresh public
key for B, i.e., pk(k), and reveal the previous private key.
Otherwise, he sends the public key pk(sk[B]). This mock
PKI is obviously not realistic but one can notice that even
when A and B are two honest agents P[0,0] |= φPKI since
the intruder never learn any public key of honest agents and
so the test “z = pk(sk[B])” will never hold.

However if you consider the process QA = newA s.
[z :=secret[A] s].outA(c,pk(xskA)).outA(c,aenc(s,pk(xskA)))
and the process QB = 0, then P[QA,QB] 6|= φsec since the
attacker can first inject in R(A,B) some nonce which will
yield xskA and ypkB to be instantiated by sk[A] and pk(sk[B])
respectively. Then, he can inject the public key pk(sk[A])
obtained from QA into R(B,A). In such a case, the test

“z = pk(sk[A])” in R(B,A) will succeed and so the secret key
sk[A] would be revealed which will allow the intruder to
decrypt aenc(s,pk(xskA)) and obtain s.

Note that this example focuses only on one session of the
PKI and would not work for unbounded number of sessions,
i.e.,

!i agt(A,{H[i],D[i]}).! j agt(B,{H[j],D[j]}).P[0,0] 6|= φPKI

However, we can create a more complex process P[A, B]
based on the same idea and relying on counters that would
illustrate the unbounded case.

A.2. Permissive Needham-Schroeder protocol

Example 12. Consider process QA from the Needham-
Schroeder protocol in Example 3. The process representing
the role of an honest agent A talking with an honest agent B
in permissive Q, that is, OA[QA]σ

priv
Q σ

pub
B , the usual process

where all keys are distributed as expected.

outA(d,outA(d,〈pk(sk[A]),pk(sk[B])〉)).
newA na.[z :=secret[A,B] na].

outA(c,aenc(〈pk(sk[A]),na〉,pk(sk[B]))).in.(c,y)
if na = proj1(proj2(adec(y,sk[A]))) then
if xpkB = proj1(adec(y,xskA)) then
[z′ :=secret[A,B] proj2(proj2(adec(y,sk[A])))].
outA(c,aenc(proj2(proj2(adec(y,sk[A]))),pk(sk[B])))

Since QA and QB do not use signing and verification keys,
we safely omitted them.

The role of an honest agent A talking with a dishonest
agent B in permissive Q, i.e., IpubB [OA[QA]]σ

priv
A , is obtained

from QA by letting the attacker freely chose the public key
of B.

inA(d,ypkB).outA(d,pk(sk[A])).
newA na.[z :=secret[A,B] na].

outA(c,aenc(〈pk(sk[A]),na〉,xpkB)).in.(c,y)
if na = proj1(proj2(adec(y,sk[A]))) then
if ypkB = proj1(adec(y,sk[A])) then
[z′ :=secret[A,B] proj2(proj2(adec(y,sk[A])))].
outA(c,aenc(proj2(proj2(adec(y,sk[A]))),ypkB))

We again omitted the unnecessary parts regarding sign-
ing/verification keys.

15

