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Trace properties

Trace properties = satisfied by all traces of a protocol

Example: reachability properties:

Can the attacker learn a given message ?

P ?

=⇒ secrecy, authentication, . . .
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Equivalence
Some properties require the notion of equivalence:

Are two protocols indistinguishable for an attacker?

P Q
?

Example:
vote privacy, strong flavours of secrecy, anonymity, unlinkability, . . .
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Example: vote privacy
Example: Privacy of the vote in voting protocols

Alice Bob

0 1

Alice Bob

1 0?

Alice and Bob vote for either 0 or 1.

The values of the votes = 0 and 1 are not secret

The votes are secret if:
Alice(0) | Bob(1) ≈ Alice(1) | Bob(0)
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Type systems
Idea: design a type system that ensures protocols satisfy security properties

Type systems: already applied to trace properties

M : Secret ` P =⇒ M is not deducible in P
Now: for equivalence

` P ∼ Q =⇒ P ≈ Q

Efficient (though incomplete) procedures
Modularity

Problem:
Usually: typing → overapproximate the set of traces.
Sound for trace properties, but not equivalence
→ might miss that some traces are only possible for P and not Q
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Main idea

Step 1: ` P ∼ Q : C
typing to ensure no leaks in behaviours
collect all symbolic messages sent on the network into a constraint

Step 2: check(C)
ensure there are no leaks in the messages sent
−→ checking for repetitions

Example:

C = {enc(x , k) ∼ enc(a, k), enc(y , k) ∼ enc(b, k)}

If in some execution we can have x = y , equivalence is broken.
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Main result: Soundness

Theorem (Soundness)
If Γ ` P ∼ Q : C and ∀θ. Cθ does not leak information, then

P ≈ Q

Theorem (Procedure to check constraints)

check(C) ⇒ ∀θ. Cθ does not leak information.

Hypotheses:
atomic keys only
fixed cryptographic primitives: symmetric and asymmetric encryption,
signature, hash, pairing
no replication (bounded number of sessions only)
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From two to unbounded number of sessions

If one session typechecks, then any number of sessions typecheck:

Theorem (informal)

Γ ` P ∼ Q : C =⇒ Γ `!P ∼!Q :!C

How to check that !C does not leak information?
−→ It is sufficient to check two copies of C :

Theorem (informal)

check(C ∪ C ′) =⇒ check(!C)
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Symbolic model

Messages are terms
constructed using abstract cryptographic primitives,

enc

〈·, ·〉

a b

k

Symbolic attacker
with abilities defined by deduction rules

enc(x , y) y
x

x y
〈x , y〉
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Symbolic model

Process algebra similar to the applied pi-calculus

P,Q ::=
0

| new n.P
| out(M).P
| in(x).P
| P | Q
| let x = d(y) in P else Q
| if M = N then P else Q
| !P
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Static equivalence
Frames are sequences of messages modelling the attacker’s knowledge

φ = {x1 7→ k, x2 7→ a, x3 7→ enc(b, k)}

Static equivalence = indistinguishability of frames

φ ≈ φ′ ⇐⇒ ∀R,S. Rφ = Sφ⇔ Rφ′ = Sφ′

Example:
{enc(a, k)} ≈ {enc(b, k)}

but
{enc(a, k), enc(a, k)} 6≈ {enc(a, k), enc(b, k)}

and
{k, enc(a, k)} 6≈ {k, enc(b, k)}
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Trace equivalence

A trace (tr , φ) is a sequence of observable actions
+ a frame of messages sent on the network

Definition (Trace equivalence)
P and Q are trace equivalent if any trace of P
can be mimicked by a trace of Q (and conversely)

i.e.

∀(tr , φ) ∈ trace(P). ∃(tr , φ′) ∈ trace(Q). φ ≈ φ′

and
∀(tr , φ) ∈ trace(Q). ∃(tr , φ′) ∈ trace(P). φ ≈ φ′
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Typing messages

Types for messages :

l ::= LL | HL | HH
T ::= l

| keyl (T )
| T ∗ T
| T ∨ T
| . . .

labels = levels of confidentiality and integrity
LL for public messages
HH for secret values

key types keyl (T )
Example:

keyHH(LL ∗ HH)

Joseph Lallemand Equivalence Properties by Typing March 14, 2018 13 / 36



Typing messages

Γ ` M ∼ N : T Γ(k) = keyHH(T )
Γ ` enc(M, k) ∼ enc(N, k) : LL

Ensure the messages sent are safe to output:
−→ similar structure

〈a, b〉 6∼ a

enc(〈a, b〉, k) ∼ enc(a, k) only if k is secret
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Typing messages

Γ ` M ∼ N : T → c Γ(k) = keyHH(T )
Γ ` enc(M, k) ∼ enc(N, k) : LL→ c ∪ {enc(M, k) ∼ enc(N, k)}

Establish invariants regarding the types of keys
If k is secret, the type of M, N must match the type of k

Collect constraints
Here we add the couple enc(M, k) ∼ enc(N, k) to the constraint
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Typing processes

All output messages must be of type LL

Their constraints are collected

Γ ` M ∼ N : LL→ c Γ ` P ∼ Q : C
Γ ` out(M).P ∼ out(N).Q : C ∪ c

All input messages are considered to be of type LL:

Γ, x : LL ` P ∼ Q : C
Γ ` in(x).P ∼ in(x).Q : C
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Typing processes (2)

−→ Processes have to progress the same way:

accept inputs/outputs at the same time,
follow (typably) equivalent branches

Example: applying destructors

Γ(x) = LL Γ(k) = keyHH(T )
Γ, y : T ` P ∼ Q : C Γ ` P ′ ∼ Q′ : C ′

Γ ` let y = dec(x , k) in P else P ′ ∼ let y = dec(x , k) in Q else Q′ : C ∪ C ′
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Constraints

Why do we need constraints?

−→ Local checks on the messages are not sufficient for equivalence

Example: If k is a secret key

out(enc(a, k)) ∼ out(enc(b, k)) is fine
out(enc(a, k)) ∼ out(enc(a, k)) is fine

but not both together

out(enc(a, k)) | out(enc(a, k)) 6∼ out(enc(b, k)) | out(enc(a, k))

C = {enc(a, k) ∼ enc(b, k), enc(a, k) ∼ enc(a, k)}
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Constraints

Collect symbolic messages in a constraint C while typing
and check that it is consistent

i.e. for any possible instantiation, C instantiated does not leak anything:

C = {u1 ∼ v1, . . . , un ∼ vn}

must satisfy

∀θ, θ′. {u1θ, . . . , unθ} ≈ {v1θ
′, . . . , vnθ

′}
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Constraints: Checking consistency

Open messages as much as possible:

〈M,N〉 −→ M,N
enc(M, k) −→ M if k has type keyLL(·)

. . .

Check that both sides of the opened constraint
satisfy the same equalities once instantiated (unification)

M ∼ N,M ′ ∼ N ′ ∈ C

∀θ, θ′. Mθ = M ′θ ⇐⇒ Nθ′ = N ′θ′

Actually only consider well-typed θ, θ′

i.e.
∀x . ` θ(x) ∼ θ′(x) : Γ(x)
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The case of different keys

In the rules shown before, the keys were the same on both sides

Γ ` M ∼ N : T → c Γ(k) = keyHH(T )
Γ ` enc(M, k) ∼ enc(N, k) : LL→ c ∪ {enc(M, k) ∼ enc(N, k)}

−→ How to handle more complex cases where different keys are used?

Example: anonymity, unlinkability
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Example: Private Authentication
−→ Authenticating B to A anonymously to others

A → B : aenc(〈Na, pk(ka)〉, pk(kb))

B → A :
{

aenc(〈Na, 〈Nb, pk(kb)〉〉, pk(ka)) if B accepts A’s request
aenc(Nb, pk(k)) if B declines A’s request

pk(k) = decoy key. No one has the secret key k.

Anonymity: an attacker cannot learn whether B is willing to talk to A or not

Alice | Bob(pkAlice) ≈ Alice | Bob(pkCharlie)

Problems: different keys and non uniform branching
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Bikeys

−→ We introduce bikeys: pairs of keys with a type

Example:
Γ(k1, k2) = keyHH(LL ∗ HH)

There may be multiple bindings for the same key :

Γ(k1, k2) = keyHH(LL ∗ HH)
Γ(k1, k3) = keyHH(HH ∗ LL)

We also add a type specifying that the keys are actually the same:

Γ(k, k) = eqkeyHH(HH)
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Bikeys: encrypting

−→ The rules for encrypting go as expected:
allow any pair of keys that is valid in Γ

Γ ` M ∼ N : T → c Γ(k1, k2) = keyHH(T )
Γ ` enc(M, k1) ∼ enc(N, k2) : LL→ c ∪ {enc(M, k1) ∼ enc(N, k2)}

−→ Similarly for asymmetric encryption and signature
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Bikeys: decrypting

Previously:

Γ(x) = LL Γ(k) = keyHH(T )
Γ, x : T ` P ∼ Q : C Γ ` P ′ ∼ Q′ : C ′

Γ ` let y = dec(x , k) in P else P ′ ∼ let y = dec(x , k) in Q else Q′ : C ∪ C ′

Problem: There may be several bindings for k1 in Γ
x may be encrypted with k1 on the left, k3 6= k2 on the right

−→ We do not know that decryption succeeds or fails equally

= the processes may branch non uniformly i.e. follow different branches
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The problem of non-uniform branching
How to handle cases where the processes follow different branches?

when decrypting with bikeys
conditional branching where uniform execution cannot be ensured

−→ We have to take all cases into account:

Γ(y) = LL Γ(k1, k2) = keyHH(T )
Γ, x : T ` P ∼ Q → C Γ ` P ′ ∼ Q′ → C ′

(∀T ′.∀k3 6= k2. Γ(k1, k3) = keyHH(T ′)⇒ Γ, x : T ′ ` P ∼ Q′ → Ck3)
(∀T ′.∀k3 6= k1. Γ(k3, k2) = keyHH(T ′)⇒ Γ, x : T ′ ` P ′ ∼ Q → C ′

k3)
Γ ` let x = dec(y , k1) in P else P ′ ∼ let x = dec(y , k2) in Q else Q′

→ C ∪ C ′ ∪ (
⋃
k3

Ck3) ∪ (
⋃
k3

C ′
k3)

Note: the simple rule still applies when keys have type eqkeyl (T )
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Back to Private Authentication

A → B : aenc(〈Na, pk(ka)〉, pk(kb))

B → A :
{

aenc(〈Na, 〈Nb, pk(kb)〉〉, pk(ka)) if B accepts A’s request
aenc(Nb, pk(k)) if B declines A’s request

Alice | Bob(pka) ≈ Alice | Bob(pkc)

We can typecheck Bob’s response by having bindings in Γ for all cases

• (ka, k) authentication succeeds on the left, fails on the right
• (k, kc) authentication succeeds on the right, fails on the left
• (ka, kc) authentication succeeds on both sides
• (k, k) authentication fails on both sides
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Done?

Not. Yet.
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The case of dynamic keys

In the rules shown before, the keys were all fixed, long-term keys

−→ We also want to consider key distribution mechanisms, where keys are

generated (session keys)
received from the network and then used to encrypt, decrypt, sign
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The case of dynamic keys (2)

−→ A new type for session keys

seskeyl (T )

Processes can

generate session keys (must specify a type annotation)

Γ, (k, k) : seskeyl (T ) ` P ∼ Q : C
Γ ` new k : seskeyl (T ). P ∼ new k : seskeyl (T ). Q : C

receive and store session keys in variables of type seskeyl (T )

use these variables as keys to encrypt, decrypt, . . .
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The case of dynamic keys (3)

−→ Tricky point: consistency of the constraints

Example: If x : LL (key provided by the attacker), typechecking

out(enc(a, x)) ∼ out(enc(a, x))

yields the constraint
enc(a, x) ∼ enc(a, x)

If we proceed as before and open the messages we get

x ∼ x

which typically renders the constraint inconsistent
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The case of dynamic keys (4)

Indeed: as soon as C contains

x ∼ x and M ∼ N

if we choose θ(x)=M and θ′(x) 6= N,

C instantiated with θ, θ′ is not statically equivalent

−→ We need to further restrict the θ we consider

−→ Invariant: variables of type LL only contain messages
the attacker can construct from the remainder of the constraint

−→ Prevents the previous θ, θ′ and solves the problem
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Experimental results

Prototype implementation for our type system
We implement a typechecker,
together with the procedure for constraints
Very efficient
But requires some type annotations

Protocol Akiss Apte Apte-POR Spec Sat-Eq TypeEq
Denning-Sacco 10 6 12 7 >30 >30

Wide Mouth Frog 14 7 12 7 >30 >30
Needham-Schroeder Symmetric Key 10 6 10 6 >30 >30

Yahalom-Lowe 10 6 10 7 >30 >30
Otway-Rees 6 3 6 6 - >30

Needham-Schroeder-Lowe 8 4 4 4 - >20

Number of sessions treated when proving secrecy
(bounded case)
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Experimental results

Closer look for the Needham-Schroeder symmetric key protocol:

# sessions Akiss Apte Apte-POR Spec Sat-Eq TypeEq
3 0.1s 0.4s 0.02s 52s 0.2s 0.003s
6 20s TO 4s MO 0.4s 0.003s
7 2m 8m 1.3s 0.003s
10 SO TO 2.3s 0.005s
12 4s 0.005s
14 7s 0.007s
30 1m6s 0.01s

Joseph Lallemand Equivalence Properties by Typing March 14, 2018 34 / 36



Experimental results (unbounded)

We also compare to ProVerif for unbounded numbers of sessions:

Protocols ProVerif TypeEq
Helios x 0.005s

Needham-Schroeder (sym) 0.23s 0.016s
Needham-Schroeder-Lowe 0.08s 0.008s

Yahalom-Lowe 0.48s 0.020s
Private Authentication 0.034s 0.008s

BAC 0.038s 0.005s

Performances comparable to ProVerif for unbounded numbers of
sessions
First automated proof for Helios with unbounded number of sessions
without private channels
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Conclusion and future work

a new approach to automatic proofs of equivalence properties for
cryptographic protocols
based on type systems + constraints
handle bounded and unbounded number of sessions (CCS’17), dynamic
keys, bikeys and non uniform branching (POST’18)
efficient implementation

Future work:
type inference
computational soundness
composition

Joseph Lallemand Equivalence Properties by Typing March 14, 2018 36 / 36


	Introduction

