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Introduction

Motivation
Security protocols are distributed programs which aim at providing
some security properties.
They are extensively used, and bugs can be very costly.
Security protocols are often short, but the security properties are
complex.

⇒ Need to use formal methods.
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Introduction

Goal of this work
We focus on fully automatic proofs of indistinguishability properties in the
computational model:

Computational model: the adversary is any probabilistic polynomial
time Turing machine. This offers strong security guarantees.
Indistinguishability properties: e.g. strong secrecy, anonymity or
unlinkability.
Fully automatic: we want a complete decision procedure.
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The Private Authentication Protocol

A’ : nA’
$←

B : nB
$←

1 : A’ −→ B : {〈pk(A’) , nA’〉}pk(B)

2 : B −→ A’ :

{
{〈nA’ , nB〉}pk(A) if pk(A’) = pk(A)
{〈nB , nB〉}pk(A) otherwise
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Model: Messages

Messages
In the computational model, a message is a distribution over bitstrings. We
only consider distribution built using:

Random uniform sampling nA, nB . . . over {0, 1}η.
Function applications:
A,B, 〈_ , _〉 , πi (_), {_}_ , pk(_), sk(_), if _ then _ else _ . . . .

Examples

〈nA , A〉 π1(nB) {〈pk(A’) , nA’〉}pk(B)
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Model: Messages

The Private Authentication Protocol

1 : A’ −→ B : {〈pk(A’) , nA’〉}pk(B)

2 : B −→ A’ :

{
{〈nA’ , nB〉}pk(A) if pk(A’) = pk(A)
{〈nB , nB〉}pk(A) otherwise

How do we represent the adversary’s inputs?

We use special functions symbols g, g0, g1 . . . .
Intuitively, they can be any probabilistic polynomial time algorithm.
Moreover, branching of the protocol is done using if _ then _ else _.
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Model: Messages

The Private Authentication Protocol

1 : A’ −→ B : {〈pk(A’) , nA’〉}pk(B)

2 : B −→ A’ :

{
{〈nA’ , nB〉}pk(A) if pk(A’) = pk(A)
{〈nB , nB〉}pk(A) otherwise

Term Representing the Messages in PA

t1 = {〈pk(A’) , nA’〉}pk(B)

t2 = if EQ(π1(dec(g(t1), sk(B))); pk(A))
then {〈π2(dec(g(t1), sk(B))) , nB〉}pk(A)

else {〈nB , nB〉}pk(A)
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Model: Protocol Execution

Protocol Execution
The execution of a protocol P is a sequence of terms using adversarial
function symbols:

uP0 , . . . , u
P
n

where uPi is the i-th message sent on the network by P .

Remark
Only possible for a bounded number of sessions.
The sequence of terms can be automatically computed (folding).
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Model: Security Property

Indistinguishability Properties
Two protocols P and Q are indistinguishable if every adversary A loses the
following game:

We toss a coin b.
If b = 0, then A interacts with P . Otherwise A interacts with Q.
Remark: A is an active adversary (it is the network).
After the protocol execution, A outputs a guess b′ for b.

A wins if it guesses correctly with probability better than ≈ 1/2.
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Model: Security Properties

Proposition

P and Q are indistinguishable
⇔

uP0 , . . . , u
P
n and uQ0 , . . . , u

Q
n are indistinguishable

⇔
uP0 , . . . , u

P
n ∼ uQ0 , . . . , u

Q
n

Example: Privacy for PA

tA1 , t
A
2 ∼ tA’

1 , t
A’
2
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Model: Summary

Summary
Messages are represented by terms, which are built using names N
and function symbols F .
A protocol execution is represented by a sequence of terms.
Indistinguishability properties are expressed through games:

uP0 , . . . , u
P
n ∼ uQ0 , . . . , u

Q
n
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Basic Games

Basic Games
We know that some indistinguishability games are secure:

Using α-renaming of random samplings:

nA, nB ∼ nC, nD

Using probabilistic arguments:

when nA 6∈ st(t),

{
t ⊕ nA ∼ nB

EQ(t; nA) ∼ false

Using cryptographic assumptions on the security primitives, e.g. if
{_}_, dec(_,_), pk(_), sk(_) is ind-cca1.
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Cryptographic assumptions: ind-cca1

b
$← {0, 1};pk

(pk, sk)← KG(1η);
c1

x1 := dec(c1, sk);x1

· · ·
cn

xn := dec(cn, sk);xn

(m0,m1)

y := {mb}pk ;y

b′

b = b′?

A Challenger
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Basic Game: Cryptographic Assumptions

EncCCA1 Games:

~v , {m0}pk ∼ ~v , {m1}pk

Assuming:
sk occurs only in decryption position in ~v ,m0,m1.

Theorem
The EncCCA1 games are secure when the encryption and decryption
function are an ind-cca1 encryption scheme.

Other cryptographic assumptions
ind-cpa, ind-cca2, cr, prf, euf-cma . . .
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Game Transformations

Proof Technique
If ~u ∼ ~v is not a basic game, we try to show that it is secure through
a succession of game transformations:

~s ∼ ~t
~u ∼ ~v

This is the way cryptographers or CryptoVerif do proofs.

Validity by reduction: ~u ∼ ~v can be replaced by ~s ∼ ~t when, given
an adversary winning ~u ∼ ~v , we can build an adversary winning ~s ∼ ~t.

Example
x ∼ y

Symy ∼ x

Adrien Koutsos Deciding Indistinguishability March 13, 2018 18 / 37



Game Transformations

Proof Technique
If ~u ∼ ~v is not a basic game, we try to show that it is secure through
a succession of game transformations:

~s ∼ ~t
~u ∼ ~v

This is the way cryptographers or CryptoVerif do proofs.
Validity by reduction: ~u ∼ ~v can be replaced by ~s ∼ ~t when, given
an adversary winning ~u ∼ ~v , we can build an adversary winning ~s ∼ ~t.

Example
x ∼ y

Symy ∼ x

Adrien Koutsos Deciding Indistinguishability March 13, 2018 18 / 37



Game Transformations

Proof Technique
If ~u ∼ ~v is not a basic game, we try to show that it is secure through
a succession of game transformations:

~s ∼ ~t
~u ∼ ~v

This is the way cryptographers or CryptoVerif do proofs.
Validity by reduction: ~u ∼ ~v can be replaced by ~s ∼ ~t when, given
an adversary winning ~u ∼ ~v , we can build an adversary winning ~s ∼ ~t.

Example
x ∼ y

Symy ∼ x

Adrien Koutsos Deciding Indistinguishability March 13, 2018 18 / 37



Structural Game Transformation

Duplicate

~wl ,

x ∼

~wr ,

y
Dup

~wl ,

x , x ∼

~wr ,

y , y
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Structural Game Transformation

Duplicate

~wl , x ∼ ~wr , y Dup
~wl , x , x ∼ ~wr , y , y
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Structural Game Transformation

Function Application
If you cannot distinguish the arguments, you cannot distinguish
the images.

~wl ,

x1, . . . , xn ∼

~wr ,

y1, . . . , yn FA

~wl ,

f (x1, . . . , xn) ∼

~wr ,

f (y1, . . . , yn)
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Structural Game Transformation

Case Study
If we use Function Application on (if then else ):

b, u, v ∼ b′, u′, v ′
FA

if b then u else v ∼ if b′ then u′ else v ′

But we can do better:

~wl ,

b, u ∼

~wr ,

b′, u′

~wl ,

b, v ∼

~wr ,

b′, v ′
CS

~wl ,

if b then u else v ∼

~wr ,

if b′ then u′ else v ′
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Game Transformation: Term Rewriting System

Remark: ∼ is not a congruence!
Counter-Example: n ∼ n and n ∼ n′, but n, n 6∼ n, n′.

Congruence
If EQ(u; v) ∼ true then u and v are (almost always) equal
⇒ we have a congruence.

u = v syntactic sugar for EQ(u; v) ∼ true

Equational Theory: Protocol Functions
πi (〈x1, x2〉) = xi i ∈ {1, 2}
dec({x}pk(y) , sk(y)) = x
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Game Transformation: Term Rewriting System

Equational Theory: Protocol Functions

If Homomorphism:
f (~u, if b then x else y , ~v) = if b then f (~u, x , ~v) else f (~u, y , ~v)
if (if b then a else c) then x else y =

if b then (if a then x else y) else (if c then x else y)

If Rewriting:
if b then x else x = x
if b then (if b then x else y) else z = if b then x else z
if b then x else (if b then y else z) = if b then x else z

If Re-Ordering:
if b then (if a then x else y) else z =

if a then (if b then x else z) else (if b then y else z)
if b then x else (if a then y else z) =

if a then (if b then x else y) else (if b then x else z)
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Decidability

Decision Problem: Game Transformations
Input: A game ~u ∼ ~v .
Question: Is there a sequence of game transformations in Ax showing that
~u ∼ ~v is secure?

or equivalently

Decision Problem: Satisfiability
Input: A ground formula ~u ∼ ~v in the BC indistinguishability logic.
Question: Is Ax ∧ ~u 6∼ ~v satisfiable?
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Game Transformations: Summary

The Non-Basic Game Transformations in Ax

x ∼ y
Dupx , x ∼ y , y

x1, . . . , xn ∼ y1, . . . , yn FA
f (x1, . . . , xn) ∼ f (y1, . . . , yn)

b, u ∼ b′, u′ b, v ∼ b′, v ′
CS

if b then u else v ∼ if b′ then u′ else v ′

~u ′ ∼ ~v ′
R

~u ∼ ~v

when ~u =R ~u ′ and ~v =R ~v
′
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Term Rewriting System

Theorem
There exists a term rewriting system →R ⊆ = such that:

→R is convergent.
= is equal to (R←∪ →R)

∗.
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Strategy

Deconstructing Rules
Rules CS,FA and Dup are decreasing transformations.

Problems
The rule R is not decreasing!
The basic games (CCA1) are given through a recursive schema.

Naive Idea
R is convergent, so could we restrict proofs to terms in R-normal form?

Adrien Koutsos Deciding Indistinguishability March 13, 2018 28 / 37



Strategy

Deconstructing Rules
Rules CS,FA and Dup are decreasing transformations.

Problems
The rule R is not decreasing!
The basic games (CCA1) are given through a recursive schema.

Naive Idea
R is convergent, so could we restrict proofs to terms in R-normal form?

Adrien Koutsos Deciding Indistinguishability March 13, 2018 28 / 37



Strategy

Deconstructing Rules
Rules CS,FA and Dup are decreasing transformations.

Problems
The rule R is not decreasing!
The basic games (CCA1) are given through a recursive schema.

Naive Idea
R is convergent, so could we restrict proofs to terms in R-normal form?

Adrien Koutsos Deciding Indistinguishability March 13, 2018 28 / 37



Difficulties

If Introduction: x → if b then x else x

n ∼ n
g(), n ∼ g(), n

FA
n ∼ n’

g(), n ∼ g(), n’
FA

if g() then n else n ∼ if g() then n else n’

CS

n ∼ if g() then n else n’

R
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Difficulties

If Introduction: : x → if b then x else x

~u, n ∼ ~u , n
~u, g(~u), n ∼ ~u , g(~u ), n

FA,Dup
~u, n ∼ ~u , n’

~u, g(~u), n ∼ ~u , g(~u ), n’
FA,Dup

~u, if g(~u) then n else n ∼ ~u , if g(~u ) then n else n’

CS

~u, n ∼ ~u , if g(~u ) then n else n’

R

Bounded Introduction
Still, the introduced conditional g(~u ) is bounded by the other side.
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Decision Procedure

Proof Cut: Introduction of a Conditional on Both Sides
a, s ∼ b, t a, s ∼ b, t

if a then s else s ∼ if b then t else t
CS

s ∼ t R

Lemma
From a proof of a, s ∼ b, t we can extract a smaller proof of s ∼ t.

⇒ Proof Cut Elimination
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Decision Procedure

Proof Cut
a1, b2, b3, u4,w5, u6, v 7 ∼ d1, c2, d3, s4, t5, r6, p7

a1

b2

u4 b3

w5 u6

v 7

∼

d1

c2

s4 d3

t5 r6

p7

FA(3)

if a then u else v ∼ if c then s else t
R

where p ≡ if c then s else t

Key Lemma
If b, b ∼ b′, b′′ can be shown using only FA,Dup and CCA1 then b′ ≡ b′′.
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Decision Procedure
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t5 r6

p7

FA(3)

if a then u else v ∼ if c then s else t
R

where p ≡ if c then s else t

Proof Cut Elimination
b2, b3 ∼ c2, d3 ⇒ c ≡ d .

a1, b2 ∼ d1, c2 ⇒ a ≡ b.
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Strategy: Theorem

Theorem
The following problem is decidable:
Input: A game ~u ∼ ~v .
Question: Is there a sequence of game transformations in Ax showing that
~u ∼ ~v is secure?

Remark: Basic Games
The above result holds when using CCA2 as basic games.

Sketch
Commute rule applications to order them as follows:

(2Box+R�) · CS� · FAif · FAf · Dup · U

We do proof cut eliminations to get a small proof.
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Conclusion

Our Works
Designed and proved correct a set of game transformations.
Showed a decision result for this set of game transformations.

Advantages and Drawbacks
Full automation.
Completeness: absence of proof
implies the existence of an
attack.

Bounded number of sessions.
Cannot easily add cryptographic
assumptions: current result only
of CCA2.

Future Works
Support for a large class of primitives and associated assumptions.
Interactive/automatic prover using the strategy.
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Thanks for your attention
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