Deciding Indistinguishability: A Decision Result for a Set of Cryptographic Game Transformations

Adrien Koutsos

March 13, 2018
(1) Introduction
(2) The Model
(3) Game Transformations

- Basic Games
- Game Transformations
(4) Decision Result
(5) Conclusion

Introduction

Motivation

- Security protocols are distributed programs which aim at providing some security properties.
- They are extensively used, and bugs can be very costly.
- Security protocols are often short, but the security properties are complex.
\Rightarrow Need to use formal methods.

Introduction

Goal of this work

We focus on fully automatic proofs of indistinguishability properties in the computational model:

- Computational model: the adversary is any probabilistic polynomial time Turing machine. This offers strong security guarantees.
- Indistinguishability properties: e.g. strong secrecy, anonymity or unlinkability.
- Fully automatic: we want a complete decision procedure.

The Private Authentication Protocol

$$
\begin{aligned}
& A^{\prime}: n_{A^{\prime}} \stackrel{\$}{\leftarrow} \\
& B: n_{B}{ }^{\$} \\
& 1: \mathrm{A}^{\prime} \longrightarrow \mathrm{B}: \quad\left\{\left\langle\mathrm{pk}\left(\mathrm{~A}^{\prime}\right), \mathrm{n}_{\mathrm{A}^{\prime}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~B})} \\
& 2: B \longrightarrow A^{\prime}: \begin{cases}\left\{\left\langle n_{A^{\prime}}, n_{B}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})} & \text { if } \mathrm{pk}\left(\mathrm{~A}^{\prime}\right)=\mathrm{pk}(\mathrm{~A}) \\
\left\{\left\langle\mathrm{n}_{\mathrm{B}}, \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})} & \text { otherwise }\end{cases}
\end{aligned}
$$

(2) The Model

(3) Game Transformations

- Basic Games
- Game Transformations
(4) Decision Result
(5) Conclusion

Model: Messages

Messages

In the computational model, a message is a distribution over bitstrings. We only consider distribution built using:

- Random uniform sampling $n_{A}, n_{B} \ldots$ over $\{0,1\}^{\eta}$.
- Function applications:
$\mathrm{A}, \mathrm{B},\left\langle_{-},{ }_{-}\right\rangle, \pi_{i}\left(__{-}\right),\left\{_{-}\right\}_{-}, \mathrm{pk}\left(__{-}\right), \mathrm{sk}\left(__{-}\right)$, if then $_{-}$else ${ }^{\text {t. }}$.

Model: Messages

Messages

In the computational model, a message is a distribution over bitstrings. We only consider distribution built using:

- Random uniform sampling $n_{A}, n_{B} \ldots$ over $\{0,1\}^{\eta}$.
- Function applications:
$\mathrm{A}, \mathrm{B},\left\langle_{-},{ }_{-}\right\rangle, \pi_{i}\left(__{-}\right),\left\{_{-}\right\}_{-}, \mathrm{pk}\left(__{-}\right), \mathrm{sk}\left(__{-}\right)$, if then $^{\text {the }}$ else \ldots

Examples

$$
\left\langle\mathrm{n}_{\mathrm{A}}, \mathrm{~A}\right\rangle \quad \pi_{1}\left(\mathrm{n}_{\mathrm{B}}\right) \quad\left\{\left\langle\mathrm{pk}\left(\mathrm{~A}^{\prime}\right), \mathrm{n}_{\mathrm{A}^{\prime}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~B})}
$$

Model: Messages

The Private Authentication Protocol

$$
\begin{aligned}
1: A^{\prime} \longrightarrow B & : \\
2: B \longrightarrow A^{\prime}: & \left\{\left\langle\operatorname{pk}\left(\mathrm{A}^{\prime}\right), \mathrm{n}_{\mathrm{A}^{\prime}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~B})} \\
\left\{\left\langle\mathrm{n}_{\mathrm{A}^{\prime}}, \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})} & \text { if } \mathrm{pk}\left(\mathrm{~A}^{\prime}\right)=\mathrm{pk}(\mathrm{~A}) \\
\left\{\left\langle\mathrm{n}_{\mathrm{B}}, \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})} & \text { otherwise }
\end{aligned}
$$

How do we represent the adversary's inputs?

Model: Messages

The Private Authentication Protocol

$$
\begin{aligned}
1: A^{\prime} \longrightarrow B: & \left\{\left\langle\operatorname{pk}\left(\mathrm{A}^{\prime}\right), \mathrm{n}_{\mathrm{A}^{\prime}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~B})} \\
2: \mathrm{B} \longrightarrow \mathrm{~A}^{\prime}: & : \begin{cases}\left\{\left\langle\mathrm{n}_{\mathrm{A}^{\prime}}, \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})} & \text { if } \mathrm{pk}\left(\mathrm{~A}^{\prime}\right)=\mathrm{pk}(\mathrm{~A}) \\
\left\{\left\langle\mathrm{n}_{\mathrm{B}}, \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})} & \text { otherwise }\end{cases}
\end{aligned}
$$

How do we represent the adversary's inputs?

- We use special functions symbols $\mathbf{g}, \mathbf{g}_{0}, \mathbf{g}_{1} \ldots$

Model: Messages

The Private Authentication Protocol

$$
\begin{aligned}
1: A^{\prime} \longrightarrow B & : \\
2: B \longrightarrow A^{\prime}: & \left\{\left\langle\mathrm{pk}\left(\mathrm{~A}^{\prime}\right), \mathrm{n}_{\mathrm{A}^{\prime}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~B})} \\
\left\{\left\langle\mathrm{n}_{\mathrm{A}^{\prime}}, \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})} & \text { if } \mathrm{pk}\left(\mathrm{~A}^{\prime}\right)=\mathrm{pk}(\mathrm{~A}) \\
\left\{\left\langle\mathrm{n}_{\mathrm{B}}, \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})} & \text { otherwise }
\end{aligned}
$$

How do we represent the adversary's inputs?

- We use special functions symbols $\mathbf{g}, \mathbf{g}_{0}, \mathbf{g}_{1} \ldots$
- Intuitively, they can be any probabilistic polynomial time algorithm.
- Moreover, branching of the protocol is done using if _ then _ else _.

Model: Messages

The Private Authentication Protocol
$1: A^{\prime} \longrightarrow B \quad: \quad\left\{\left\langle\mathrm{pk}\left(\mathrm{A}^{\prime}\right), \mathrm{n}_{\mathrm{A}^{\prime}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{B})}$
$2: B \longrightarrow A^{\prime}: \begin{cases}\left\{\left\langle n_{A^{\prime}}, n_{B}\right\rangle\right\}_{\mathrm{pk}(\mathrm{A})} & \left.\text { if pk(} \mathrm{A}^{\prime}\right)=\mathrm{pk}(\mathrm{A}) \\ \left\{\left\langle\mathrm{n}_{\mathrm{B}}, \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{A})} & \text { otherwise }\end{cases}$

Model: Messages

The Private Authentication Protocol

$$
\begin{aligned}
1: A^{\prime} \longrightarrow B & : \\
2: B \longrightarrow A^{\prime}: & \left\{\left\langle\operatorname{pk}\left(\mathrm{A}^{\prime}\right), \mathrm{n}_{\mathrm{A}^{\prime}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~B})} \\
\left\{\left\langle\mathrm{n}_{\mathrm{A}^{\prime}}, \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})} & \text { if } \mathrm{pk}\left(\mathrm{~A}^{\prime}\right)=\mathrm{pk}(\mathrm{~A}) \\
\left\{\left\langle\mathrm{n}_{\mathrm{B}}, \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})} & \text { otherwise }
\end{aligned}
$$

Term Representing the Messages in PA

$$
\begin{aligned}
t_{1}= & \left\{\left\langle\operatorname{pk}\left(\mathrm{A}^{\prime}\right), \mathrm{n}_{\mathrm{A}^{\prime}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~B})} \\
t_{2}= & \text { if } \quad \mathrm{EQ}\left(\pi_{1}\left(\operatorname{dec}\left(\mathrm{~g}\left(t_{1}\right), \operatorname{sk}(\mathrm{B})\right)\right) ; \operatorname{pk}(\mathrm{A})\right) \\
& \text { then }\left\{\left\langle\pi_{2}\left(\operatorname{dec}\left(\mathrm{~g}\left(t_{1}\right), \operatorname{sk}(\mathrm{B})\right)\right), \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})} \\
& \text { else } \quad\left\{\left\langle\mathrm{n}_{\mathrm{B}}, \mathrm{n}_{\mathrm{B}}\right\rangle\right\}_{\mathrm{pk}(\mathrm{~A})}
\end{aligned}
$$

Model: Protocol Execution

Protocol Execution

The execution of a protocol P is a sequence of terms using adversarial function symbols:

$$
u_{0}^{P}, \ldots, u_{n}^{P}
$$

where u_{i}^{P} is the i-th message sent on the network by P.

Model: Protocol Execution

Protocol Execution

The execution of a protocol P is a sequence of terms using adversarial function symbols:

$$
u_{0}^{P}, \ldots, u_{n}^{P}
$$

where u_{i}^{P} is the i-th message sent on the network by P.

Remark

- Only possible for a bounded number of sessions.
- The sequence of terms can be automatically computed (folding).

Model: Security Property

Indistinguishability Properties

Two protocols P and Q are indistinguishable if every adversary \mathcal{A} loses the following game:

- We toss a coin b.
- If $b=0$, then \mathcal{A} interacts with P. Otherwise \mathcal{A} interacts with Q.

Remark: \mathcal{A} is an active adversary (it is the network).

- After the protocol execution, \mathcal{A} outputs a guess b^{\prime} for b.
\mathcal{A} wins if it guesses correctly with probability better than $\approx 1 / 2$.

Model: Security Properties

Proposition

P and Q are indistinguishable

$$
\begin{aligned}
& u_{0}^{P}, \ldots, u_{n}^{P} \text { and } u_{0}^{Q}, \ldots, u_{n}^{Q} \text { are indistinguishable } \\
& \Leftrightarrow \\
& u_{0}^{P}, \ldots, u_{n}^{P} \sim u_{0}^{Q}, \ldots, u_{n}^{Q}
\end{aligned}
$$

Model: Security Properties

Proposition

P and Q are indistinguishable
\Leftrightarrow
$u_{0}^{P}, \ldots, u_{n}^{P}$ and $u_{0}^{Q}, \ldots, u_{n}^{Q}$ are indistinguishable
\Leftrightarrow
$u_{0}^{P}, \ldots, u_{n}^{P} \quad \sim \quad u_{0}^{Q}, \ldots, u_{n}^{Q}$

Example: Privacy for PA

$$
t_{1}^{\mathrm{A}}, t_{2}^{\mathrm{A}} \sim t_{1}^{\mathrm{A}^{\prime}}, t_{2}^{\mathrm{A}^{\prime}}
$$

Model: Summary

Summary

- Messages are represented by terms, which are built using names \mathcal{N} and function symbols \mathcal{F}.
- A protocol execution is represented by a sequence of terms.
- Indistinguishability properties are expressed through games:

$$
u_{0}^{P}, \ldots, u_{n}^{P} \quad \sim u_{0}^{Q}, \ldots, u_{n}^{Q}
$$

(3) Game Transformations

- Basic Games
- Game Transformations

(4) Decision Result

Basic Games

Basic Games

We know that some indistinguishability games are secure:

- Using α-renaming of random samplings:

$$
\mathrm{n}_{\mathrm{A}}, \mathrm{n}_{\mathrm{B}} \sim \mathrm{n}_{\mathrm{C}}, \mathrm{n}_{\mathrm{D}}
$$

Basic Games

Basic Games

We know that some indistinguishability games are secure:

- Using α-renaming of random samplings:

$$
\mathrm{n}_{\mathrm{A}}, \mathrm{n}_{\mathrm{B}} \sim \mathrm{n}_{\mathrm{C}}, \mathrm{n}_{\mathrm{D}}
$$

- Using probabilistic arguments:

$$
\text { when } \mathrm{n}_{\mathrm{A}} \notin \operatorname{st}(t), \quad\left\{\begin{array}{l}
t \oplus \mathrm{n}_{\mathrm{A}} \sim \mathrm{n}_{\mathrm{B}} \\
\mathrm{EQ}\left(t ; \mathrm{n}_{\mathrm{A}}\right) \sim \text { false }
\end{array}\right.
$$

Basic Games

Basic Games

We know that some indistinguishability games are secure:

- Using α-renaming of random samplings:

$$
\mathrm{n}_{\mathrm{A}}, \mathrm{n}_{\mathrm{B}} \sim \mathrm{n}_{\mathrm{C}}, \mathrm{n}_{\mathrm{D}}
$$

- Using probabilistic arguments:

$$
\text { when } \mathrm{n}_{\mathrm{A}} \notin \operatorname{st}(t), \quad\left\{\begin{array}{l}
t \oplus \mathrm{n}_{\mathrm{A}} \sim \mathrm{n}_{\mathrm{B}} \\
\mathrm{EQ}\left(t ; \mathrm{n}_{\mathrm{A}}\right) \sim \text { false }
\end{array}\right.
$$

- Using cryptographic assumptions on the security primitives, e.g. if $\left\{_\right\}, \operatorname{dec}\left(__{-}\right), \mathrm{pk}\left(_\right), \mathrm{sk}\left({ }_{-}\right)$is IND-CCA1.

Cryptographic assumptions: IND-CCA1

\mathcal{A}	pk	Challenger $\begin{aligned} & b \stackrel{\$}{\leftarrow}\{0,1\} ; \\ & (\mathrm{pk}, \mathrm{sk}) \leftarrow \mathcal{K} \mathcal{G}\left(1^{\eta}\right) \end{aligned}$
	c_{1}	$x_{1}:=\operatorname{dec}\left(c_{1}, s k\right) ;$
	x_{1}	
	\ddot{c}_{n}	
	x_{n}	$x_{n} \cdot=\operatorname{dec}\left(c_{n}, s k\right)$,
	$\left(m_{0}, m_{1}\right)$	
	y	$y:=\left\{m_{b}\right\}_{\text {pk }} ;$
	b^{\prime}	

$$
b=b^{\prime} ?
$$

Basic Game: Cryptographic Assumptions

Encccai Games:

$$
\vec{v},\left\{m_{0}\right\}_{\mathrm{pk}} \sim \vec{v},\left\{m_{1}\right\}_{\mathrm{pk}}
$$

Basic Game: Cryptographic Assumptions

Encccai Games:

$$
\vec{v},\left\{m_{0}\right\}_{\mathrm{pk}} \sim \vec{v},\left\{m_{1}\right\}_{\mathrm{pk}}
$$

Assuming:

- sk occurs only in decryption position in \vec{v}, m_{0}, m_{1}.

Theorem

The Encccal games are secure when the encryption and decryption function are an IND-CCA1 encryption scheme.

Basic Game: Cryptographic Assumptions

Enccca1 Games:

$$
\vec{v},\left\{m_{0}\right\}_{\mathrm{pk}} \sim \vec{v},\left\{m_{1}\right\}_{\mathrm{pk}}
$$

Assuming:

- sk occurs only in decryption position in \vec{v}, m_{0}, m_{1}.

Theorem

The Encccal games are secure when the encryption and decryption function are an IND-CCA1 encryption scheme.

Other cryptographic assumptions
IND-CPA, IND-CCA2, CR, PRF, EUF-CMA ...

Game Transformations

Proof Technique

- If $\vec{u} \sim \vec{v}$ is not a basic game, we try to show that it is secure through a succession of game transformations:

$$
\frac{\vec{s} \sim \vec{t}}{\vec{u} \sim \vec{v}}
$$

- This is the way cryptographers or CryptoVerif do proofs.

Game Transformations

Proof Technique

- If $\vec{u} \sim \vec{v}$ is not a basic game, we try to show that it is secure through a succession of game transformations:

$$
\frac{\vec{s} \sim \vec{t}}{\vec{u} \sim \vec{v}}
$$

- This is the way cryptographers or CryptoVerif do proofs.
- Validity by reduction: $\vec{u} \sim \vec{v}$ can be replaced by $\vec{s} \sim \vec{t}$ when, given an adversary winning $\vec{u} \sim \vec{v}$, we can build an adversary winning $\vec{s} \sim \vec{t}$.

Game Transformations

Proof Technique

- If $\vec{u} \sim \vec{v}$ is not a basic game, we try to show that it is secure through a succession of game transformations:

$$
\frac{\vec{s} \sim \vec{t}}{\vec{u} \sim \vec{v}}
$$

- This is the way cryptographers or CryptoVerif do proofs.
- Validity by reduction: $\vec{u} \sim \vec{v}$ can be replaced by $\vec{s} \sim \vec{t}$ when, given an adversary winning $\vec{u} \sim \vec{v}$, we can build an adversary winning $\vec{s} \sim \vec{t}$.

Example

$$
\frac{x \sim y}{y \sim x} \operatorname{Sym}
$$

Structural Game Transformation

Duplicate

$$
\begin{aligned}
& x \sim y \\
& x, x \sim y, y \\
& \text { Dup }
\end{aligned}
$$

Structural Game Transformation

Duplicate

$$
\frac{\vec{w}_{l}, x \sim \vec{w}_{r}, y}{\vec{w}_{l}, x, x \sim \vec{w}_{r}, y, y} \text { Dup }
$$

Structural Game Transformation

Function Application

If you cannot distinguish the arguments, you cannot distinguish the images.

$$
\begin{aligned}
x_{1}, \ldots, x_{n} \sim & y_{1}, \ldots, y_{n} \\
\hline f\left(x_{1}, \ldots, x_{n}\right) \sim & f\left(y_{1}, \ldots, y_{n}\right)
\end{aligned} \text { FA }
$$

Structural Game Transformation

Function Application

If you cannot distinguish the arguments, you cannot distinguish the images.

$$
\frac{\vec{w}_{l}, x_{1}, \ldots, x_{n} \sim \vec{w}_{r}, y_{1}, \ldots, y_{n}}{\vec{w}_{l}, f\left(x_{1}, \ldots, x_{n}\right) \sim \vec{w}_{r}, f\left(y_{1}, \ldots, y_{n}\right)} \text { FA }
$$

Structural Game Transformation

Case Study

If we use Function Application on (if then else):

$$
\frac{b, u, v \sim b^{\prime}, u^{\prime}, v^{\prime}}{\text { if } b \text { then } u \text { else } v \sim \text { if } b^{\prime} \text { then } u^{\prime} \text { else } v^{\prime}} \mathrm{FA}
$$

Structural Game Transformation

Case Study

If we use Function Application on (if then else):

$$
\frac{b, u, v \sim b^{\prime}, u^{\prime}, v^{\prime}}{\text { if } b \text { then } u \text { else } v \sim \text { if } b^{\prime} \text { then } u^{\prime} \text { else } v^{\prime}} \mathrm{FA}
$$

But we can do better:

$$
\begin{gathered}
b, u \sim b^{\prime}, u^{\prime} \quad b, v \sim b^{\prime}, v^{\prime} \\
\hline \text { if } b \text { then } u \text { else } v \sim \quad \text { if } b^{\prime} \text { then } u^{\prime} \text { else } v^{\prime}
\end{gathered}
$$

Structural Game Transformation

Case Study

If we use Function Application on (if then else):

$$
\frac{b, u, v \sim b^{\prime}, u^{\prime}, v^{\prime}}{\text { if } b \text { then } u \text { else } v \sim \text { if } b^{\prime} \text { then } u^{\prime} \text { else } v^{\prime}} \mathrm{FA}
$$

But we can do better:

$$
\frac{\vec{w}_{l}, b, u \sim \vec{w}_{r}, b^{\prime}, u^{\prime} \quad \vec{w}_{l}, b, v \sim \vec{w}_{r}, b^{\prime}, v^{\prime}}{\vec{w}_{l}, \text { if } b \text { then } u \text { else } v \sim \vec{w}_{r}, \text { if } b^{\prime} \text { then } u^{\prime} \text { else } v^{\prime}} \mathrm{CS}
$$

Game Transformation: Term Rewriting System

Remark: \sim is not a congruence!
Counter-Example: $\mathrm{n} \sim \mathrm{n}$ and $\mathrm{n} \sim \mathrm{n}^{\prime}$, but $\mathrm{n}, \mathrm{n} \nsim \mathrm{n}, \mathrm{n}^{\prime}$.

Game Transformation: Term Rewriting System

Remark: ~ is not a congruence!
Counter-Example: $\mathrm{n} \sim \mathrm{n}$ and $\mathrm{n} \sim \mathrm{n}^{\prime}$, but $\mathrm{n}, \mathrm{n} \nsim \mathrm{n}, \mathrm{n}^{\prime}$.

Congruence

If $\mathrm{EQ}(u ; v) \sim$ true then u and v are (almost always) equal \Rightarrow we have a congruence.
$u=v$ syntactic sugar for $\mathrm{EQ}(u ; v) \sim$ true
Equational Theory: Protocol Functions

- $\pi_{i}\left(\left\langle x_{1}, x_{2}\right\rangle\right)=x_{i}$
- $\operatorname{dec}\left(\{x\}_{\mathrm{pk}(y)}, \operatorname{sk}(y)\right)=x$

Game Transformation: Term Rewriting System

Equational Theory: Protocol Functions

If Homomorphism:
$f(\vec{u}$, if b then x else $y, \vec{v})=$ if b then $f(\vec{u}, x, \vec{v})$ else $f(\vec{u}, y, \vec{v})$ if (if b then a else c) then x else $y=$
if b then (if a then x else y) else (if c then x else y)

Game Transformation: Term Rewriting System

Equational Theory: Protocol Functions

If Homomorphism:
$f(\vec{u}$, if b then x else $y, \vec{v})=$ if b then $f(\vec{u}, x, \vec{v})$ else $f(\vec{u}, y, \vec{v})$
if (if b then a else c) then x else $y=$
if b then (if a then x else y) else (if c then x else y)
If Rewriting:
if b then x else $x=x$
if b then (if b then x else y) else $z=$ if b then x else z
if b then x else (if b then y else z) $=$ if b then x else z

Game Transformation: Term Rewriting System

Equational Theory: Protocol Functions

If Homomorphism:

$f(\vec{u}$, if b then x else $y, \vec{v})=$ if b then $f(\vec{u}, x, \vec{v})$ else $f(\vec{u}, y, \vec{v})$
if (if b then a else c) then x else $y=$ if b then (if a then x else y) else (if c then x else y)

If Rewriting:

if b then x else $x=x$
if b then (if b then x else y) else $z=$ if b then x else z
if b then x else (if b then y else z) $=$ if b then x else z
If Re-Ordering:
if b then (if a then x else y) else $z=$
if a then (if b then x else z) else (if b then y else z)
if b then x else (if a then y else z) =
if a then (if b then x else y) else (if b then x else z)
(2) The Model
(3) Game Transformations

- Basic Games
- Game Transformations

4 Decision Result

Decidability

Decision Problem: Game Transformations

Input: A game $\vec{u} \sim \vec{v}$.
Question: Is there a sequence of game transformations in Ax showing that $\vec{u} \sim \vec{v}$ is secure?

Decidability

Decision Problem: Game Transformations

Input: A game $\vec{u} \sim \vec{v}$.
Question: Is there a sequence of game transformations in Ax showing that $\vec{u} \sim \vec{v}$ is secure?

or equivalently

Decision Problem: Satisfiability

Input: A ground formula $\vec{u} \sim \vec{v}$ in the BC indistinguishability logic. Question: Is $\mathrm{Ax} \wedge \vec{u} \nsim \vec{v}$ satisfiable?

Game Transformations: Summary

The Non-Basic Game Transformations in Ax

$$
\begin{gathered}
\frac{x \sim y}{x, x \sim y, y} \text { Dup } \\
\frac{x_{1}, \ldots, x_{n} \sim y_{1}, \ldots, y_{n}}{f\left(x_{1}, \ldots, x_{n}\right) \sim f\left(y_{1}, \ldots, y_{n}\right)} \text { FA } \\
\frac{b, u \sim b^{\prime}, u^{\prime} \quad b, v \sim b^{\prime}, v^{\prime}}{\text { if } b \text { then } u \text { else } v \sim \text { if } b^{\prime} \text { then } u^{\prime} \text { else } v^{\prime} C S}
\end{gathered}
$$

Game Transformations: Summary

The Non-Basic Game Transformations in Ax

$$
\frac{x \sim y}{x, x \sim y, y} \text { Dup }
$$

$$
\frac{x_{1}, \ldots, x_{n} \sim y_{1}, \ldots, y_{n}}{f\left(x_{1}, \ldots, x_{n}\right) \sim f\left(y_{1}, \ldots, y_{n}\right)} \text { FA }
$$

$\frac{b, u \sim b^{\prime}, u^{\prime} \quad b, v \sim b^{\prime}, v^{\prime}}{\text { if } b \text { then } u \text { else } v \sim \text { if } b^{\prime} \text { then } u^{\prime} \text { else } v^{\prime}} \mathrm{CS}$

$$
\begin{gathered}
\frac{\vec{u}^{\prime} \sim \vec{v}^{\prime}}{\vec{u} \sim \vec{v}} R \\
\text { when } \vec{u}=R \vec{u}^{\prime} \text { and } \vec{v}={ }_{R} \vec{v}^{\prime}
\end{gathered}
$$

Term Rewriting System

Theorem

There exists a term rewriting system $\rightarrow_{R} \subseteq=$ such that:

- \rightarrow_{R} is convergent.
- = is equal to $\left(R_{R} \leftarrow \cup \rightarrow_{R}\right)^{*}$.

Strategy

Deconstructing Rules
 Rules CS, FA and Dup are decreasing transformations.

Strategy

Deconstructing Rules

Rules CS, FA and Dup are decreasing transformations.

Problems

- The rule R is not decreasing!
- The basic games (CCA1) are given through a recursive schema.

Strategy

Deconstructing Rules
 Rules CS, FA and Dup are decreasing transformations.

Problems

- The rule R is not decreasing!
- The basic games (CCA1) are given through a recursive schema.

Naive Idea
 R is convergent, so could we restrict proofs to terms in R-normal form?

Difficulties

If Introduction: $x \rightarrow$ if b then x else x
$\mathrm{n} \sim$ if $g()$ then n else n^{\prime}

Difficulties

If Introduction: $x \rightarrow$ if b then x else x

$$
\frac{\text { if } g() \text { then } \mathrm{n} \text { else } \mathrm{n} \sim \text { if } g() \text { then } \mathrm{n} \text { else } \mathrm{n}^{\prime}}{\mathrm{n} \sim \text { if } g() \text { then } \mathrm{n} \text { else } \mathrm{n}^{\prime}}
$$

Difficulties

If Introduction: $x \rightarrow$ if b then x else x

$$
\frac{\frac{\overline{\mathrm{n} \sim \mathrm{n}}}{\frac{g(), \mathrm{n} \sim g(), \mathrm{n}}{} \text { FA } \quad \frac{\overline{\mathrm{n} \sim \mathrm{n}^{\prime}}}{g(), \mathrm{n} \sim g(), \mathrm{n}^{\prime}} \text { FA }} \text { (if() then } \mathrm{n} \text { else } \mathrm{n} \sim \text { if } g() \text { then } \mathrm{n} \text { else } \mathrm{n}^{\prime}}{\mathrm{n} \sim \text { if } g() \text { then } \mathrm{n} \text { else } \mathrm{n}^{\prime}} R
$$

Difficulties

If Introduction: : $x \rightarrow$ if b then x else x

$$
\vec{u}, \mathrm{n} \sim \vec{u}, \text { if } g(\vec{u}) \text { then } \mathrm{n} \text { else } \mathrm{n}^{\prime}
$$

Difficulties

If Introduction: : $x \rightarrow$ if b then x else x

$$
\frac{\vec{u}, \text { if } g(\vec{u}) \text { then } \mathrm{n} \text { else } \mathrm{n} \sim \vec{u}, \text { if } g(\vec{u}) \text { then } \mathrm{n} \text { else } \mathrm{n}^{\prime}}{\vec{u}, \mathrm{n} \sim \vec{u}, \text { if } g(\vec{u}) \text { then } \mathrm{n} \text { else } \mathrm{n}^{\prime}} R
$$

Difficulties

If Introduction: : $x \rightarrow$ if b then x else x

$$
\frac{\frac{\vec{u}, \mathrm{n} \sim \vec{u}, \mathrm{n}}{\overrightarrow{\vec{u}, g(\vec{u}), \mathrm{n} \sim \vec{u}, g(\vec{u}), \mathrm{n}} \text { FA, Dup } \quad \frac{\overrightarrow{\vec{u}, \mathrm{n} \sim \vec{u}, \mathrm{n}^{\prime}}}{\overrightarrow{\vec{u}, \text { if } g(\vec{u}) \text { then } \mathrm{n} \text { else } \mathrm{n} \sim \vec{u}), \mathrm{n} \sim \vec{u}, g(\vec{u}), \mathrm{n}^{\prime}}} \mathrm{g(} \mathrm{\vec{u})} \mathrm{then} \mathrm{n} \mathrm{else} \mathrm{n}^{\prime}} \text { FA, Dup } \mathrm{n} \sim \vec{u}, \text { if } g(\vec{u}) \text { then } \mathrm{n} \text { else } \mathrm{n}^{\prime}}{} \text { CS }
$$

Difficulties

If Introduction: : $x \rightarrow$ if b then x else x

$$
\frac{\frac{\vec{u}, \mathrm{n} \sim \vec{u}, \mathrm{n}}{\vec{u}, g(\vec{u}), \mathrm{n} \sim \vec{u}, g(\vec{u}), \mathrm{n}} \text { FA, Dup } \frac{\overrightarrow{\vec{u}, \mathrm{n} \sim \vec{u}, \mathrm{n}^{\prime}}}{\overrightarrow{\vec{u}, g(\vec{u}, g(\vec{u}), \mathrm{n} \sim \vec{u}, g(\vec{u}),} \text { then } \mathrm{n} \text { else } \mathrm{n} \sim \vec{u}, \text { if } g(\vec{u}) \text { then } \mathrm{n} \text { else } \mathrm{n}^{\prime}}}{\frac{\vec{u}, \mathrm{n} \sim \vec{u}, \text { if } g(\vec{u}) \text { then } \mathrm{n} \text { else } \mathrm{n}^{\prime}}{}}
$$

Bounded Introduction

Still, the introduced conditional $g(\vec{u})$ is bounded by the other side.

Decision Procedure

Proof Cut: Introduction of a Conditional on Both Sides

$$
\frac{\frac{a, s \sim b, t}{\text { if } a \text { then } s \text { else } s \sim \text { if } b \text { then } t \text { else } t}}{s \sim t} R
$$

Decision Procedure

Proof Cut: Introduction of a Conditional on Both Sides

$$
\frac{\frac{a, s \sim b, t}{\text { if } a \text { then } s \text { else } s \sim \text { if } b \text { then } t \text { else } t}}{s \sim t} R
$$

Lemma

From a proof of $a, s \sim b, t$ we can extract a smaller proof of $s \sim t$.

Decision Procedure

Proof Cut: Introduction of a Conditional on Both Sides

$$
\frac{\frac{a, s \sim b, t}{\text { if } a \text { then } s \text { else } s \sim \text { if } b \text { then } t \text { else } t}}{s \sim t} R
$$

Lemma

From a proof of $a, s \sim b, t$ we can extract a smaller proof of $s \sim t$.

\Rightarrow Proof Cut Elimination

Decision Procedure

Proof Cut

$$
\frac{a_{1}, b_{2}, b_{3}, u_{4}, w_{5}, u_{6}, v_{7} \sim d_{1}, c_{2}, d_{3}, s_{4}, t_{5}, r_{6}, p_{7}}{a_{1}} \mathrm{FA}^{(3)}
$$

where $p \equiv$ if c then s else t

Decision Procedure

Proof Cut

$$
\frac{a_{1}, b_{2}, b_{3}, u_{4}, w_{5}, u_{6}, v_{7} \sim d_{1}, c_{2}, d_{3}, s_{4}, t_{5}, r_{6}, p_{7}}{a_{1}} \mathrm{FA}^{(3)}
$$

where $p \equiv$ if c then s else t

Key Lemma

If $b, b \sim b^{\prime}, b^{\prime \prime}$ can be shown using only FA, Dup and CCA1 then $b^{\prime} \equiv b^{\prime \prime}$.

Decision Procedure

Proof Cut

$$
\begin{aligned}
& \frac{a_{1}, b_{2}, b_{3}, u_{4}, w_{5}, u_{6}, v_{7} \sim d_{1}, c_{2}, d_{3}, s_{4}, t_{5}, r_{6}, p_{7}}{b_{1}} \mathrm{FA}^{(3)} \\
& \text { if } a \text { then } u \text { else } v \sim \text { if } c \text { then } s \text { else } t R
\end{aligned}
$$

where $p \equiv$ if c then s else t

Proof Cut Elimination

- $b_{2}, b_{3} \sim c_{2}, d_{3} \quad \Rightarrow \quad c \equiv d$.

Decision Procedure

Proof Cut

$$
\begin{aligned}
& \frac{a_{1}, b_{2}, b_{3}, u_{4}, w_{5}, u_{6}, v_{7} \sim d_{1}, c_{2}, d_{3}, s_{4}, t_{5}, r_{6}, p_{7}}{a_{1}} \mathrm{FA}^{(3)} \\
& \text { if } a \text { then } u \text { else } v \sim \text { if } c \text { then } s \text { else } t R
\end{aligned}
$$

where $p \equiv$ if c then s else t

Proof Cut Elimination

- $b_{2}, b_{3} \sim c_{2}, d_{3} \quad \Rightarrow \quad c \equiv d$.
- $a_{1}, b_{2} \sim d_{1}, c_{2} \quad \Rightarrow \quad a \equiv b$.

Strategy: Theorem

Theorem

The following problem is decidable:
Input: A game $\vec{u} \sim \vec{v}$.
Question: Is there a sequence of game transformations in Ax showing that $\vec{u} \sim \vec{v}$ is secure?

Strategy: Theorem

Theorem

The following problem is decidable:
Input: A game $\vec{u} \sim \vec{v}$.
Question: Is there a sequence of game transformations in Ax showing that $\vec{u} \sim \vec{v}$ is secure?

Remark: Basic Games

The above result holds when using CCA2 as basic games.

Strategy: Theorem

Theorem

The following problem is decidable:
Input: A game $\vec{u} \sim \vec{v}$.
Question: Is there a sequence of game transformations in Ax showing that $\vec{u} \sim \vec{v}$ is secure?

Remark: Basic Games

The above result holds when using CCA2 as basic games.

Sketch

- Commute rule applications to order them as follows:

$$
\left(2 \mathrm{Box}+R_{\square}\right) \cdot \mathrm{CS}_{\square} \cdot \mathrm{FA}_{\mathrm{if}} \cdot \mathrm{FA}_{\mathrm{f}} \cdot \text { Dup } \cdot \mathrm{U}
$$

- We do proof cut eliminations to get a small proof.
(2) The Model
(3) Game Transformations
- Basic Games
- Game Transformations
(4) Decision Result
(5) Conclusion

Conclusion

Our Works

- Designed and proved correct a set of game transformations.
- Showed a decision result for this set of game transformations.

Conclusion

Our Works

- Designed and proved correct a set of game transformations.
- Showed a decision result for this set of game transformations.

Advantages and Drawbacks

- Full automation.
- Completeness: absence of proof implies the existence of an attack.
- Bounded number of sessions.
- Cannot easily add cryptographic assumptions: current result only of CCA2.

Conclusion

Our Works

- Designed and proved correct a set of game transformations.
- Showed a decision result for this set of game transformations.

Advantages and Drawbacks

- Full automation.
- Completeness: absence of proof implies the existence of an attack.
- Bounded number of sessions.
- Cannot easily add cryptographic assumptions: current result only of CCA2.

Future Works

- Support for a large class of primitives and associated assumptions.
- Interactive/automatic prover using the strategy.

Thanks for your attention

