Deciding Indistinguishability: A Decision Result for a Set of Cryptographic Game Transformations

Adrien Koutsos

March 13, 2018

Adrien Koutsos

Deciding Indistinguishability

March 13, 2018 1 / 37

- Basic Games
- Game Transformations

4 Decision Result

5 Conclusion

э

Introduction

Motivation

- Security protocols are distributed programs which aim at providing some security properties.
- They are extensively used, and bugs can be very costly.
- Security protocols are often short, but the security properties are complex.
- \Rightarrow Need to use formal methods.

Introduction

Goal of this work

We focus on *fully automatic* proofs of *indistinguishability* properties in the *computational* model:

- **Computational model:** the adversary is any *probabilistic polynomial time Turing machine*. This offers strong security guarantees.
- Indistinguishability properties: e.g. strong secrecy, anonymity or unlinkability.
- Fully automatic: we want a complete decision procedure.

The Private Authentication Protocol

$$\begin{array}{rcl} A' & : & n_{A'} \stackrel{\$}{\leftarrow} \\ B & : & n_{B} \stackrel{\$}{\leftarrow} \end{array} \\ 1 : A' \longrightarrow B & : & \{\langle pk(A'), n_{A'} \rangle\}_{pk(B)} \\ 2 : B \longrightarrow A' & : & \begin{cases} \{\langle n_{A'}, n_{B} \rangle\}_{pk(A)} & \text{if } pk(A') = pk(A) \\ \{\langle n_{B}, n_{B} \rangle\}_{pk(A)} & \text{otherwise} \end{cases} \end{array}$$

Adrien Koutsos

Deciding Indistinguishability

March 13, 2018 5 / 37

3

イロト イポト イヨト イヨト

- Basic Games
- Game Transformations

4 Decision Result

5 Conclusion

э

- ∢ ≣ →

< 🗇 🕨

Messages

In the computational model, a message is a *distribution over bitstrings*. We only consider distribution built using:

- Random uniform sampling $n_A, n_B \dots$ over $\{0, 1\}^{\eta}$.
- Function applications:

$$\mathsf{A},\mathsf{B},\langle_\,,_\,\rangle\,,\pi_i(_\,),\{_\,\}_\,,\mathsf{pk}(_\,),\mathsf{sk}(_\,),\mathsf{if}_\mathsf{then}_\mathsf{else}_\ldots$$

э

.

Messages

In the computational model, a message is a *distribution over bitstrings*. We only consider distribution built using:

- Random uniform sampling $n_{\mathsf{A}}, n_{\mathsf{B}} \dots$ over $\{0,1\}^{\eta}.$
- Function applications:

$$\mathsf{A},\mathsf{B},\langle_\,,_\,\rangle,\pi_{\textit{i}}(_),\{_\}_\,,\mathsf{pk}(_),\mathsf{sk}(_),\mathsf{if}_\mathsf{then}_\mathsf{else}_\dots$$

Examples

$$\langle n_{A}, A \rangle$$
 $\pi_{1}(n_{B})$ $\{\langle pk(A'), n_{A'} \rangle\}_{pk(B)}$

- 3

・ 戸 ト ・ ヨ ト ・ ヨ ト

The Private Authentication Protocol

$$\begin{split} 1: A' &\longrightarrow B : \{ \langle pk(A'), n_{A'} \rangle \}_{pk(B)} \\ 2: B &\longrightarrow A' : \begin{cases} \{ \langle n_{A'}, n_{B} \rangle \}_{pk(A)} & \text{if } pk(A') = pk(A) \\ \{ \langle n_{B}, n_{B} \rangle \}_{pk(A)} & \text{otherwise} \end{cases} \end{split}$$

How do we represent the adversary's inputs?

- < ∃ →

< A > <

э

The Private Authentication Protocol

$$\begin{split} 1: \mathsf{A}' &\longrightarrow \mathsf{B} : \{ \langle \mathsf{pk}(\mathsf{A}'), \, \mathsf{n}_{\mathsf{A}'} \rangle \}_{\mathsf{pk}(\mathsf{B})} \\ 2: \mathsf{B} &\longrightarrow \mathsf{A}' : \begin{cases} \{ \langle \mathsf{n}_{\mathsf{A}'}, \, \mathsf{n}_{\mathsf{B}} \rangle \}_{\mathsf{pk}(\mathsf{A})} & \text{if } \mathsf{pk}(\mathsf{A}') = \mathsf{pk}(\mathsf{A}) \\ \{ \langle \mathsf{n}_{\mathsf{B}}, \, \mathsf{n}_{\mathsf{B}} \rangle \}_{\mathsf{pk}(\mathsf{A})} & \text{otherwise} \end{cases} \end{split}$$

How do we represent the adversary's inputs?

 \bullet We use special functions symbols $g,g_0,g_1\ldots$

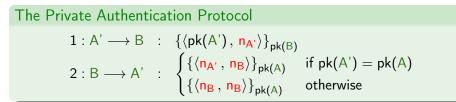
э

The Private Authentication Protocol

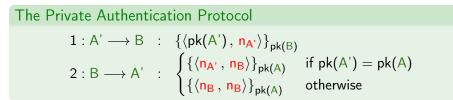
$$\begin{split} 1: A' &\longrightarrow B : \{ \langle pk(A'), n_{A'} \rangle \}_{pk(B)} \\ 2: B &\longrightarrow A' : \begin{cases} \{ \langle n_{A'}, n_B \rangle \}_{pk(A)} & \text{if } pk(A') = pk(A) \\ \{ \langle n_B, n_B \rangle \}_{pk(A)} & \text{otherwise} \end{cases} \end{split}$$

How do we represent the adversary's inputs?

- \bullet We use special functions symbols g,g_0,g_1,\ldots
- Intuitively, they can be any probabilistic polynomial time algorithm.
- Moreover, branching of the protocol is done using if _ then _ else _.



・ 「「・・・ 」 ・ ・ 」 ・ 」 ヨ



Term Representing the Messages in PA

$$t_{1} = \{ \langle \mathsf{pk}(\mathsf{A}'), \, \mathsf{n}_{\mathsf{A}'} \rangle \}_{\mathsf{pk}(\mathsf{B})}$$

$$t_{2} = \mathsf{if} \qquad \mathsf{EQ}(\pi_{1}(\mathsf{dec}(\mathbf{g}(t_{1}), \mathsf{sk}(\mathsf{B}))); \mathsf{pk}(\mathsf{A})))$$

$$\mathsf{then} \{ \langle \pi_{2}(\mathsf{dec}(\mathbf{g}(t_{1}), \mathsf{sk}(\mathsf{B}))), \, \mathsf{n}_{\mathsf{B}} \rangle \}_{\mathsf{pk}(\mathsf{A})}$$

$$\mathsf{else} \qquad \{ \langle \mathsf{n}_{\mathsf{B}}, \, \mathsf{n}_{\mathsf{B}} \rangle \}_{\mathsf{pk}(\mathsf{A})}$$

(個) () ヨト (ヨト) ヨ

Model: Protocol Execution

Protocol Execution

The execution of a protocol P is a sequence of terms using adversarial function symbols:

$$u_0^{\mathsf{P}},\ldots,u_n^{\mathsf{P}}$$

where u_i^P is the *i*-th message sent on the network by P.

Model: Protocol Execution

Protocol Execution

The execution of a protocol P is a sequence of terms using adversarial function symbols:

$$u_0^P,\ldots,u_n^P$$

where u_i^P is the *i*-th message sent on the network by *P*.

Remark

- Only possible for a bounded number of sessions.
- The sequence of terms can be automatically computed (*folding*).

Model: Security Property

Indistinguishability Properties

Two protocols P and Q are *indistinguishable* if every adversary A loses the following game:

- We toss a coin **b**.
- If b = 0, then A interacts with P. Otherwise A interacts with Q. Remark: A is an active adversary (it is the network).
- After the protocol execution, \mathcal{A} outputs a guess b' for b.

 ${\cal A}$ wins if it guesses correctly with probability better than $\approx 1/2.$

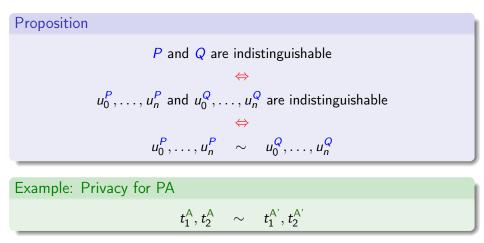
Model: Security Properties

Proposition

P and Q are indistinguishable \Leftrightarrow u_0^P, \dots, u_n^P and u_0^Q, \dots, u_n^Q are indistinguishable \Leftrightarrow $u_0^P, \dots, u_n^P \sim u_0^Q, \dots, u_n^Q$

< A > <

Model: Security Properties



rien		

March 13, 2018 12 / 37

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

Model: Summary

Summary

- Messages are represented by *terms*, which are built using names \mathcal{N} and function symbols \mathcal{F} .
- A protocol execution is represented by a sequence of terms.
- Indistinguishability properties are expressed through games:

$$u_0^P,\ldots,u_n^P$$
 ~ u_0^Q,\ldots,u_n^Q

The Model

Game Transformations

- Basic Games
- Game Transformations

4 Decision Result

5 Conclusion

Basic Games

Basic Games

We know that some indistinguishability games are secure:

• Using α -renaming of random samplings:

 $n_A, n_B \sim n_C, n_D$

3

글 에 에 글 어

< 4 → <

Basic Games

Basic Games

We know that some indistinguishability games are secure:

• Using α -renaming of random samplings:

 $n_A, n_B \sim n_C, n_D$

• Using probabilistic arguments:

when
$$\mathbf{n}_{\mathsf{A}} \notin \mathsf{st}(t)$$
,
$$\begin{cases} t \oplus \mathbf{n}_{\mathsf{A}} \sim \mathbf{n}_{\mathsf{B}} \\ \mathsf{EQ}(t; \mathbf{n}_{\mathsf{A}}) \sim \mathsf{false} \end{cases}$$

3

Basic Games

Basic Games

We know that some indistinguishability games are secure:

• Using α -renaming of random samplings:

 $n_A, n_B \sim n_C, n_D$

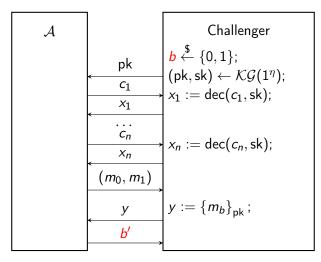
• Using probabilistic arguments:

when
$$\mathbf{n}_{\mathsf{A}} \notin \operatorname{st}(t)$$
,
$$\begin{cases} t \oplus \mathbf{n}_{\mathsf{A}} \sim \mathbf{n}_{\mathsf{B}} \\ \mathsf{EQ}(t; \mathbf{n}_{\mathsf{A}}) \sim \mathsf{false} \end{cases}$$

• Using *cryptographic assumptions* on the security primitives, e.g. if {_} , dec(_, _), pk(_), sk(_) is IND-CCA1.

イロト イポト イヨト イヨト 二日

Cryptographic assumptions: IND-CCA1



- 4 ⊒ → March 13, 2018 16 / 37

э

Basic Game: Cryptographic Assumptions

Enc_{CCA1} Games:

$$ec{v}, \left\{ \textit{m}_0
ight\}_{\sf pk} \sim ec{v}, \left\{ \textit{m}_1
ight\}_{\sf pk}$$

(日) (個) (E) (E) (E)

Basic Game: Cryptographic Assumptions

Enc_{CCA1} Games:

$$ec{v}, \left\{ \textit{m}_0
ight\}_{\sf pk} \sim ec{v}, \left\{ \textit{m}_1
ight\}_{\sf pk}$$

Assuming:

• sk occurs only in decryption position in \vec{v}, m_0, m_1 .

Theorem

The Enc_{CCA1} games are secure when the encryption and decryption function are an IND-CCA1 encryption scheme.

I ∃ ►

Basic Game: Cryptographic Assumptions

Enc_{CCA1} Games:

$$ec{v}, \left\{ \textit{m}_0
ight\}_{\sf pk} \sim ec{v}, \left\{ \textit{m}_1
ight\}_{\sf pk}$$

Assuming:

• sk occurs only in decryption position in \vec{v}, m_0, m_1 .

Theorem

The *Enc*_{CCA1} games are secure when the encryption and decryption function are an IND-CCA1 encryption scheme.

Other cryptographic assumptions

IND-CPA, IND-CCA2, CR, PRF, EUF-CMA ...

イロト イポト イヨト イヨト

Proof Technique

• If $\vec{u} \sim \vec{v}$ is not a basic game, we try to show that it is secure through a succession of *game transformations*:

$$rac{ec{s}\simec{t}}{ec{u}\simec{v}}$$

• This is the way cryptographers or CryptoVerif do proofs.

Proof Technique

• If $\vec{u} \sim \vec{v}$ is not a basic game, we try to show that it is secure through a succession of *game transformations*:

$$rac{ec{s} \sim ec{t}}{ec{u} \sim ec{v}}$$

- This is the way cryptographers or CryptoVerif do proofs.
- Validity by reduction: $\vec{u} \sim \vec{v}$ can be replaced by $\vec{s} \sim \vec{t}$ when, given an adversary winning $\vec{u} \sim \vec{v}$, we can build an adversary winning $\vec{s} \sim \vec{t}$.

Proof Technique

• If $\vec{u} \sim \vec{v}$ is not a basic game, we try to show that it is secure through a succession of *game transformations*:

$$\frac{\vec{s} \sim \vec{t}}{\vec{u} \sim \vec{v}}$$

- This is the way cryptographers or CryptoVerif do proofs.
- Validity by reduction: $\vec{u} \sim \vec{v}$ can be replaced by $\vec{s} \sim \vec{t}$ when, given an adversary winning $\vec{u} \sim \vec{v}$, we can build an adversary winning $\vec{s} \sim \vec{t}$.

Example $\frac{x \sim y}{y \sim x} Sym$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

3

イロト イポト イヨト イヨト

Duplicate

$$rac{ec{w_l}, x \sim ec{w_r}, y}{ec{w_l}, x, x \sim ec{w_r}, y, y}$$
 Dup

æ

イロト イポト イヨト イヨト

Function Application

If you cannot distinguish the arguments, you cannot distinguish the images.

$$\frac{x_1,\ldots,x_n\sim y_1,\ldots,y_n}{f(x_1,\ldots,x_n)\sim f(y_1,\ldots,y_n)}$$
 FA

э

Function Application

If you cannot distinguish the arguments, you cannot distinguish the images.

$$\frac{\vec{w}_l, x_1, \dots, x_n \sim \vec{w}_r, y_1, \dots, y_n}{\vec{w}_l, f(x_1, \dots, x_n) \sim \vec{w}_r, f(y_1, \dots, y_n)} FA$$

Adrien Koutsos

Deciding Indistinguishability

March 13, 2018

э

20 / 37

Case Study

If we use Function Application on (if then else):

$$\displaystyle rac{b,\,u,\,v\sim b',\,u',\,v'}{ ext{if}\;b\; ext{then}\;u\; ext{else}\;v\sim ext{if}\;b'\; ext{then}\;u'\; ext{else}\;v'}\; ext{FA}$$

3

→ < ∃→

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Case Study

If we use Function Application on (if then else):

$$b, u, v \sim b', u', v'$$

if b then u else v \sim if b' then u' else v' FA

But we can do better:

$$\begin{array}{c|c} b, u \sim b', u' & b, v \sim b', v' \\ \hline \text{if } b \text{ then } u \text{ else } v \sim & \text{if } b' \text{ then } u' \text{ else } v' \\ \end{array} \mathsf{CS}$$

< 4 → <

3

Structural Game Transformation

Case Study

If we use Function Application on (if then else):

$$b, u, v \sim b', u', v'$$

if b then u else $v \sim$ if b' then u' else v' FA

But we can do better:

$$\frac{\vec{w_l}, b, u \sim \vec{w_r}, b', u'}{\vec{w_l}, \text{ if } b \text{ then } u \text{ else } v \sim \vec{w_r}, \text{ if } b' \text{ then } u' \text{ else } v'} CS$$

< 4 → <

Remark: \sim is not a congruence!

Counter-Example: $n \sim n$ and $n \sim n'$, but $n, n \not\sim n, n'$.

э

Remark: \sim is not a congruence!

Counter-Example: $n \sim n$ and $n \sim n'$, but $n, n \not\sim n, n'$.

Congruence If EQ(u; v) ~ true then u and v are (almost always) equal \Rightarrow we have a congruence.

u = v syntactic sugar for EQ(u; v) \sim true

Equational Theory: Protocol Functions	
• $\pi_i(\langle x_1, x_2 \rangle) = x_i$	$i\in\{1,2\}$
• $dec({x}_{pk(y)}, sk(y)) = x$	

Equational Theory: Protocol Functions

If Homomorphism:

 $f(\vec{u}, \text{if } b \text{ then } x \text{ else } y, \vec{v}) = \text{if } b \text{ then } f(\vec{u}, x, \vec{v}) \text{ else } f(\vec{u}, y, \vec{v})$ if (if b then a else c) then x else y = if b then (if a then x else y) else (if c then x else y)

< 67 ▶

Equational Theory: Protocol Functions

If Homomorphism:

 $f(\vec{u}, \text{if } b \text{ then } \mathbf{x} \text{ else } \mathbf{y}, \vec{v}) = \text{if } b \text{ then } f(\vec{u}, \mathbf{x}, \vec{v}) \text{ else } f(\vec{u}, \mathbf{y}, \vec{v})$ if (if b then a else c) then x else $\mathbf{y} =$

if b then (if a then x else y) else (if c then x else y) If Rewriting:

if b then x else x = x

if b then (if b then x else y) else z = if b then x else z

if b then x else (if b then y else z) = if b then x else z

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Equational Theory: Protocol Functions

If Homomorphism:

 $f(\vec{u}, \text{if } b \text{ then } x \text{ else } y, \vec{v}) = \text{if } b \text{ then } f(\vec{u}, x, \vec{v}) \text{ else } f(\vec{u}, y, \vec{v})$ if (if b then a else c) then x else y =

if b then (if a then x else y) else (if c then x else y) If Rewriting:

if b then x else x = x
if b then (if b then x else y) else z = if b then x else z
if b then x else (if b then y else z) = if b then x else z
If Re-Ordering:
if b then (if a then x else y) else z =
 if a then (if b then x else z) else (if b then y else z)
if b then x else (if a then y else z) =

if a then (if b then x else y) else (if b then x else z)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction

2 The Model

Game Transformations

- Basic Games
- Game Transformations

4 Decision Result

5 Conclusion

э

∃ → (∃ →

< 🗗 🕨

Decidability

Decision Problem: Game Transformations

Input: A game $\vec{u} \sim \vec{v}$. **Question:** Is there a sequence of game transformations in Ax showing that $\vec{u} \sim \vec{v}$ is secure?

Decidability

Decision Problem: Game Transformations

Input: A game $\vec{u} \sim \vec{v}$. **Question:** Is there a sequence of game transformations in Ax showing that $\vec{u} \sim \vec{v}$ is secure?

or equivalently

Decision Problem: Satisfiability

Input: A ground formula $\vec{u} \sim \vec{v}$ in the BC indistinguishability logic. **Question:** Is Ax $\land \vec{u} \not\sim \vec{v}$ satisfiable?

Game Transformations: Summary

The Non-Basic Game Transformations in Ax

$$\frac{x \sim y}{x, x \sim y, y}$$
 Dup

$$\frac{x_1,\ldots,x_n\sim y_1,\ldots,y_n}{f(x_1,\ldots,x_n)\sim f(y_1,\ldots,y_n)}$$
 FA

$$\frac{b, u \sim b', u' \qquad b, v \sim b', v'}{\text{if } b \text{ then } u \text{ else } v \sim \text{if } b' \text{ then } u' \text{ else } v'} \text{ CS}$$

Adrien Koutsos

March 13, 2018 26 / 37

Game Transformations: Summary

The Non-Basic Game Transformations in Ax

$$rac{x \sim y}{x, x \sim y, y}$$
 Dup

$$\frac{x_1,\ldots,x_n\sim y_1,\ldots,y_n}{f(x_1,\ldots,x_n)\sim f(y_1,\ldots,y_n)}$$
 FA

 $\frac{b, u \sim b', u' \qquad b, v \sim b', v'}{\text{if } b \text{ then } u \text{ else } v \sim \text{if } b' \text{ then } u' \text{ else } v'} \text{ CS}$

$$rac{ec{u}'\simec{v}'}{ec{u}\simec{v}}$$
 R

when
$$\vec{u} =_R \vec{u}'$$
 and $\vec{v} =_R \vec{v}'$

Adrien Koutsos

Term Rewriting System

Theorem

There exists a term rewriting system $\rightarrow_R \subseteq$ = such that:

- \rightarrow_R is convergent.
- = is equal to $(_{R} \leftarrow \cup \rightarrow_{R})^{*}$.

★掃♪ ★注♪ ★注♪ ……注

Deconstructing Rules

Rules CS, FA and Dup are decreasing transformations.

э

→ < Ξ →</p>

Strategy

Deconstructing Rules

Rules CS, FA and Dup are decreasing transformations.

Problems

- The rule R is not decreasing!
- The basic games (CCA1) are given through a recursive schema.

э

Strategy

Deconstructing Rules

Rules CS, FA and Dup are decreasing transformations.

Problems

- The rule R is not decreasing!
- The basic games (CCA1) are given through a recursive schema.

Naive Idea

R is convergent, so could we restrict proofs to terms in R-normal form?

・ 同 ト ・ ヨ ト ・ ヨ ト

If Introduction: $x \rightarrow \text{if } b$ then x else x

$n \sim if g()$ then n else n'

Adrien Koutsos

Deciding Indistinguishability

March 13, 2018 2

(日) (同) (三) (三)

29 / 37

э

If Introduction: $x \rightarrow \text{if } b$ then x else x

$$\frac{\text{if }g() \text{ then } n \text{ else } n \sim \text{if }g() \text{ then } n \text{ else } n'}{n \sim \text{if }g() \text{ then } n \text{ else } n'} R$$

Adrien Koutsos

Deciding Indistinguishability

March 13, 2018 29 / 37

э

イロト イポト イヨト イヨト

If Introduction: $x \to \text{if } b$ then x else x $\frac{\overline{n \sim n}}{g(), n \sim g(), n} \xrightarrow{\text{FA}} \frac{\overline{n \sim n'}}{g(), n \sim g(), n'} \xrightarrow{\text{FA}} CS$ $\frac{\overline{\text{if } g() \text{ then } n \text{ else } n \sim \text{if } g() \text{ then } n \text{ else } n'}{n \sim \text{if } g() \text{ then } n \text{ else } n'} \xrightarrow{R}$

If Introduction: $x \to if b$ then x else x

$\vec{u}, \mathbf{n} \sim \vec{u}, \text{if } g(\vec{u}) \text{ then } \mathbf{n} \text{ else } \mathbf{n}'$

Adrien Koutsos

Deciding Indistinguishability

3 × 4 3 × March 13, 2018

< (17) × <

30 / 37

э

If Introduction: $x \to \text{if } b \text{ then } x \text{ else } x$

$$\frac{\vec{u}, \text{if } g(\vec{u}) \text{ then } n \text{ else } n \sim \vec{u}, \text{if } g(\vec{u}) \text{ then } n \text{ else } n'}{\vec{u}, n \sim \vec{u}, \text{if } g(\vec{u}) \text{ then } n \text{ else } n'} R$$

Adrien Koutsos

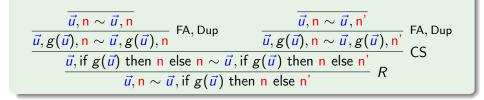
Deciding Indistinguishability

March 13, 2018 30 / 37

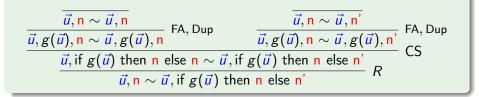
3

イロト イポト イヨト イヨト

If Introduction: $x \to if b$ then x else x



If Introduction: $x \to if b$ then x else x



Bounded Introduction

Still, the introduced conditional $g(\vec{u})$ is bounded by the other side.

Proof Cut: Introduction of a Conditional on Both Sides $\frac{a, s \sim b, t}{\frac{if \ a \ then \ s \ else \ s \sim if \ b \ then \ t \ else \ t}{s \sim t}} \begin{array}{c} CS \\ R \end{array}$

3

Proof Cut: Introduction of a Conditional on Both Sides

$$\frac{a, s \sim b, t}{\text{if } a \text{ then } s \text{ else } s \sim \text{if } b \text{ then } t \text{ else } t}{s \sim t} R$$

Lemma

From a proof of $a, s \sim b, t$ we can extract a smaller proof of $s \sim t$.

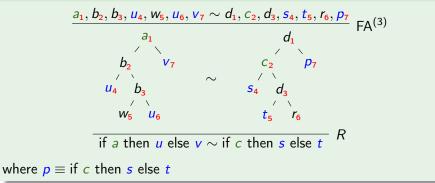
Proof Cut: Introduction of a Conditional on Both Sides

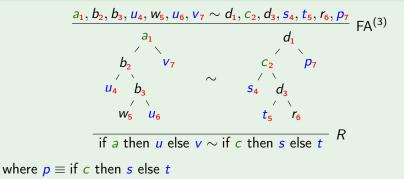
$$\frac{a, s \sim b, t}{\text{if } a \text{ then } s \text{ else } s \sim \text{if } b \text{ then } t \text{ else } t} R$$

Lemma

From a proof of $a, s \sim b, t$ we can extract a smaller proof of $s \sim t$.

\Rightarrow Proof Cut Elimination

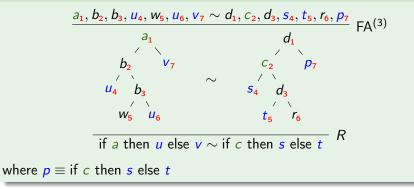




Key Lemma

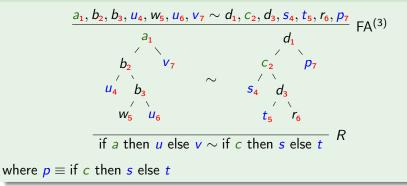
If $b, b \sim b', b''$ can be shown using only FA, Dup and CCA1 then $b' \equiv b''$.

Proof Cut



Proof Cut Elimination • $b_2, b_3 \sim c_2, d_3 \Rightarrow c \equiv d.$

Proof Cut



Proof Cut Elimination• $b_2, b_3 \sim c_2, d_3 \Rightarrow c \equiv d.$ • $a_1, b_2 \sim d_1, c_2 \Rightarrow a \equiv b.$ ConstraintsAdrien KoutsosDeciding IndistinguishabilityMarch 13, 201833 / 37

Strategy: Theorem

Theorem

The following problem is decidable: **Input:** A game $\vec{u} \sim \vec{v}$. **Question:** Is there a sequence of game transformations in Ax showing that $\vec{u} \sim \vec{v}$ is secure?

э

< ∃ >

Strategy: Theorem

Theorem

The following problem is decidable: **Input:** A game $\vec{u} \sim \vec{v}$. **Question:** Is there a sequence of game transformations in Ax showing that $\vec{u} \sim \vec{v}$ is secure?

Remark: Basic Games

The above result holds when using CCA2 as basic games.

Strategy: Theorem

Theorem

The following problem is decidable: **Input:** A game $\vec{u} \sim \vec{v}$. **Question:** Is there a sequence of game transformations in Ax showing that $\vec{u} \sim \vec{v}$ is secure?

Remark: Basic Games

The above result holds when using CCA2 as basic games.

Sketch

• Commute rule applications to order them as follows:

$$(2Box + R_{\Box}) \cdot CS_{\Box} \cdot FA_{if} \cdot FA_{f} \cdot Dup \cdot U$$

• We do proof cut eliminations to get a small proof.

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Introduction

2 The Model

Game Transformations

- Basic Games
- Game Transformations

4 Decision Result

5 Conclusion

э

∃ → (∃ →

< A > <

Conclusion

Our Works

- Designed and proved correct a set of game transformations.
- Showed a decision result for this set of game transformations.

э

Conclusion

Our Works

- Designed and proved correct a set of game transformations.
- Showed a decision result for this set of game transformations.

Advantages and Drawbacks

- Full automation.
- Completeness: absence of proof implies the existence of an attack.
- Bounded number of sessions.
- Cannot easily add cryptographic assumptions: current result only of CCA2.

Conclusion

Our Works

- Designed and proved correct a set of game transformations.
- Showed a decision result for this set of game transformations.

Advantages and Drawbacks

- Full automation.
- Completeness: absence of proof implies the existence of an attack.
- Bounded number of sessions.
- Cannot easily add cryptographic assumptions: current result only of CCA2.

Future Works

- Support for a large class of primitives and associated assumptions.
- Interactive/automatic prover using the strategy.

∃ → (∃ →

Thanks for your attention

Irien		

æ

イロト イヨト イヨト イヨト