
Introduction Composition Application to TLS 1.3 Conclusion

Composition Theorems for CryptoVerif and
Application to TLS 1.3

Bruno Blanchet

INRIA Paris
Bruno.Blanchet@inria.fr

March 2018

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 1 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Introduction

Composition between
a key exchange protocol
a protocol that uses the key

Results stated in the CryptoVerif framework:
computational model
formal framework for stating the composition theorem
prove bigger protocols in CryptoVerif
prove protocols with loops in CryptoVerif

Adapt and extend previous computational composition results by
Brzuska, Fischlin et al. [CCS’11, CCS’14 and CCS’15]

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 2 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Application to TLS 1.3

Why TLS 1.3 ?
Important protocol, in the final stages of development
Well designed to allow composition
Contains loops:

Unbounded number of handshakes and key updates
Variety of compositions:

In most cases, the key exchange provides injective authentication
For 0-RTT data = data sent by the client to the server immediately
after the message (ClientHello):

possible replay, so non-injective authentication
variant for the case of altered ClientHello

Simpler composition theorem for key updates
Fills a gap in the proof of TLS 1.3 Draft 18 by Bhargavan et al [S&P’18]

The composition was stated only informally.

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 3 / 38

Introduction Composition Application to TLS 1.3 Conclusion

CryptoVerif, http://cryptoverif.inria.fr/

CryptoVerif is a semi-automatic prover that:
works in the computational model.
generates proofs by sequences of games.
provides a generic method for specifying properties of
cryptographic primitives which handles MACs (message
authentication codes), symmetric encryption,
public-key encryption, signatures, hash functions,
Diffie-Hellman key agreements, . . .
works for N sessions (polynomial in the security parameter), with an
active adversary.
gives a bound on the probability of an attack (exact security).

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 4 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Reminder on CryptoVerif

CryptoVerif represents protocols using a process calculus.
P, Q: processes
C : context = process with one or several holes []
Adversaries represented by evaluation contexts:
C ::= evaluation context

[] hole
newChannel c; C channel restriction
Q | C parallel composition
C | Q parallel composition

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 5 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Security properties proved by CryptoVerif

Indistinguishability: Q ≈V Q′ when an adversary with access to the
variables V has a negligible probability of distinguishing Q from Q′.
Secrecy: Q preserves the secrecy of x with public variables V when
an adversary with access to the variables V has a negligible
probability of distinguishing the values of x in several sessions from
independent random values.
Correspondences: If some events have been executed, then other
events have been executed. Example:

event(e1(x)) =⇒ event(e2(x))

Q satisfies the correspondence corr with public variables V when an
adversary with access to the variables V has a negligible probability
of breaking corr .

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 6 / 38

Introduction Composition Application to TLS 1.3 Conclusion

The most basic composition theorem

S1:

k (secret)

S2: new k : T

Scomposed :

k

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 7 / 38

Introduction Composition Application to TLS 1.3 Conclusion

The most basic composition theorem

Theorem (Assumptions)

Let C be any context with one hole, without replications above the hole.
Let M be a term of type T . Let

S1 = C [let k = M in c1〈〉; Q1]
S2 = c2(); new k : T ; c3〈〉; Q2

where c1, c2, c3 do not occur elsewhere in S1, S2; k is the only variable
common to S1 and S2; S1 and S2 have no common channel, no common
event, and no common table; and k does not occur in C and Q1.
Let c ′1 be a fresh channel. Let

Scomposed = C [let k = M in c ′1〈〉; (Q1 | Q2)]

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 8 / 38

Introduction Composition Application to TLS 1.3 Conclusion

The most basic composition theorem

Theorem (First conclusion)

S1 = C [let k = M in c1〈〉; Q1]
S2 = c2(); new k : T ; c3〈〉; Q2

Scomposed = C [let k = M in c ′1〈〉; (Q1 | Q2)]

1 If S1 preserves the secrecy of k with public variables V (k /∈ V),
then we can transfer security properties from S2 to Scomposed .

Let S◦composed be Scomposed with the events of S1 removed.

S◦composed ≈V1 C ′[S2]
for some evaluation context C ′ acceptable for S2 without public
variables and for any V1 ⊆ V ∪ (var(S1) \ {k}).
C ′ is independent of Q2.
Intuition: The secrecy of k allows us to replace k with a random key.

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 9 / 38

Introduction Composition Application to TLS 1.3 Conclusion

The most basic composition theorem

Theorem (Second conclusion)

S1 = C [let k = M in c1〈〉; Q1]
S2 = c2(); new k : T ; c3〈〉; Q2

Scomposed = C [let k = M in c ′1〈〉; (Q1 | Q2)]

2 We can transfer security properties from S1 to Scomposed , provided
they are proved with public variable k.

Scomposed ≈V ′ C ′′[S1]
for some evaluation context C ′′ acceptable for S1 with public
variable k and for any V ′ ⊆ var(Scomposed).
C ′′ contains the events of S2.
C ′′ is independent of C and Q1.

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 10 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Main theorem

S1:

A B

kA kB

S2: new k : T

A B

Scomposed :

A B

A B
kA kB

(S1 may run several sessions of A and B.)
Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 11 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Replicating S2

Consider:

S2 = c(); . . . c1(y : T) . . . event e(M) . . .

insert T (M ′) . . . get T (z) suchthat . . .

We want to replicate S2:

!̃i≤ñ c(); . . . c1(y : T) . . . event e(M) . . .

insert T (M ′) . . . get T (z) suchthat . . .

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 12 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Replicating S2

Consider:

S2 = c(); . . . c1(y : T) . . . event e(M) . . .

insert T (M ′) . . . get T (z) suchthat . . .

We want to replicate S2:

!̃i≤ñ c(); . . . c1(y [̃i] : T) . . . event e(M) . . .

insert T (M ′) . . . get T (z [̃i]) suchthat . . .

Variables implicitly with indices of replication.

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 13 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Replicating S2

Consider:

S2 = c(); . . . c1(y : T) . . . event e(M) . . .

insert T (M ′) . . . get T (z) suchthat . . .

We want to replicate S2:

!̃i≤ñ c [̃i](); . . . c1 [̃i](y [̃i] : T) . . . event e(̃i , M) . . .

insert T (̃i , M ′) . . . get T (= ĩ , z [̃i]) suchthat . . .

We could add indices to channels, events, and tables to distinguish the
various sessions.

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 14 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Replicating S2

Consider:

S2 = c(); . . . c1(y : T) . . . event e(M) . . .

insert T (M ′) . . . get T (z) suchthat . . .

We want to replicate S2:

!̃i≤ñ c [̃i](); . . . c1 [̃i](y [̃i] : T) . . . event e(̃i , M) . . .

insert T (̃i , M ′) . . . get T (= ĩ , z [̃i]) suchthat . . .

Problem: this is not preserved by composition.
In the key exchange, partenered sessions exchange the same messages,
but may not have the same replication indices.
Also in the composed system.

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 15 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Replicating S2

Consider:

S2 = c(); . . . c1(y : T) . . . event e(M) . . .

insert T (M ′) . . . get T (z) suchthat . . .

We want to replicate S2:

!̃i≤ñ c [̃i](x : Tsid); . . . c1 [̃i](y [̃i] : T) . . . event e(x , M) . . .

insert T (x , M ′) . . . get T (= x , z [̃i]) suchthat . . .

Partnered sessions can be determined by a session identifier computed
from the messages in the protocol.
The protocol that uses the key receives the session identifier in a variable
x .

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 16 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Replicating S2

Consider:
S2 = c(); P
P = . . . c1(y : T) . . . event e(M) . . .

insert T (M ′) . . . get T (z) suchthat . . .

We replicate S2:

S2! = AddReplSid(̃i ≤ ñ, c ′, Tsid, S2) = !̃i≤ñ c ′ [̃i](x : Tsid);
find ũ = ĩ ′ ≤ ñ suchthat defined(x [̃i ′], x ′ [̃i ′])
∧ x = x [̃i ′] then yield else

let x ′ = cst in AddIdxSid(̃i ≤ ñ, x : Tsid, P)
AddIdxSid(̃i ≤ ñ, x : Tsid, P) = . . . c1 [̃i](y [̃i] : T) . . . event e(x , M) . . .

insert T (x , M ′) . . . get T (= x , z [̃i]) suchthat . . .

Never use the same session identifier twice.
Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 17 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Replicating S2: transfer of security properties

Theorem
Let Q! = AddReplSid(̃i ≤ ñ, c ′, Tsid, Q)
and Q′! = AddReplSid(̃i ≤ ñ, c ′, Tsid, Q′).

1 If Q and Q′ do not contain events and Q ≈V Q′, then Q! ≈V Q′!.
2 If Q preserves the secrecy of y with public variables V , then so does

Q!.
3 If Q satisfies event(e1(y)) =⇒ event(e2(y)) with public variables

V , then Q! satisfies event(e1(x , y)) =⇒ event(e2(x , y)) with public
variables V .

(Add a variable session identifier at the beginning of each event.)

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 18 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Main composition theorem

S1:

A B

kA kB

S2!: AddReplMsg
new k : T

A B

Scomposed :

A B

A B
kA kB

(S1 may run several sessions of A and B.)
Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 19 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Main composition theorem

Theorem (S1 and S2!)

S1 = C [event eA(sid(m̃sgA), kA, ĩ); let k ′A = kA in cA [̃i]〈MA〉; Q1A,

event eB(sid(m̃sgB), kB); cB [̃i ′]〈MB〉; Q1B]
S2 = c1(); new k : T ; c2〈〉; (Q2A | Q2B)
S2! = AddReplSid(̃i ≤ ñ, c ′1, Tsid, S2)

where
1 C, Q1A, Q1B, Q2A, and Q2B make all their inputs and outputs on

pairwise distinct channels with indices the current replication indices;
2 cA, cB, c1, c ′1, c2, k ′A, eA, eB do not occur elsewhere in S1, S2!;
3 S1 and S2! have no common variable, channel, event, table;
4 S1 and S2! do not contain newChannel;
5 and there is no defined condition in S2.
Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 20 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Main composition theorem

Theorem (S1 and S2!)

S1 = C [event eA(sid(m̃sgA), kA, ĩ); let k ′A = kA in cA [̃i]〈MA〉; Q1A,

event eB(sid(m̃sgB), kB); cB [̃i ′]〈MB〉; Q1B]
S2 = c1(); new k : T ; c2〈〉; (Q2A | Q2B)
S2! = AddReplSid(̃i ≤ ñ, c ′1, Tsid, S2)

where
1 C, Q1A, Q1B, Q2A, and Q2B make all their inputs and outputs on

pairwise distinct channels with indices the current replication indices;
2 cA, cB, c1, c ′1, c2, k ′A, eA, eB do not occur elsewhere in S1, S2!;
3 S1 and S2! have no common variable, channel, event, table;
4 S1 and S2! do not contain newChannel;
5 and there is no defined condition in S2.

C is a context with two holes, with
replications !̃i≤ñ above the first hole

and !̃i ′≤ñ′ above the second hole

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 21 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Main composition theorem

Theorem (S1 and S2!)

S1 = C [event eA(sid(m̃sgA), kA, ĩ); let k ′A = kA in cA [̃i]〈MA〉; Q1A,

event eB(sid(m̃sgB), kB); cB [̃i ′]〈MB〉; Q1B]
S2 = c1(); new k : T ; c2〈〉; (Q2A | Q2B)
S2! = AddReplSid(̃i ≤ ñ, c ′1, Tsid, S2)

where
1 C, Q1A, Q1B, Q2A, and Q2B make all their inputs and outputs on

pairwise distinct channels with indices the current replication indices;
2 cA, cB, c1, c ′1, c2, k ′A, eA, eB do not occur elsewhere in S1, S2!;
3 S1 and S2! have no common variable, channel, event, table;
4 S1 and S2! do not contain newChannel;
5 and there is no defined condition in S2.
Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 22 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Main composition theorem

Theorem (S1 and S2!)

S1 = C [event eA(sid(m̃sgA), kA, ĩ); let k ′A = kA in cA [̃i]〈MA〉; Q1A,

event eB(sid(m̃sgB), kB); cB [̃i ′]〈MB〉; Q1B]
S2 = c1(); new k : T ; c2〈〉; (Q2A | Q2B)
S2! = AddReplSid(̃i ≤ ñ, c ′1, Tsid, S2)

where
1 C, Q1A, Q1B, Q2A, and Q2B make all their inputs and outputs on

pairwise distinct channels with indices the current replication indices;
2 cA, cB, c1, c ′1, c2, k ′A, eA, eB do not occur elsewhere in S1, S2!;
3 S1 and S2! have no common variable, channel, event, table;
4 S1 and S2! do not contain newChannel;
5 and there is no defined condition in S2.

sid is a function that takes a
sequence of messages and returns

a session identifier of type Tsid

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 23 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Main composition theorem

Theorem (S1 and S2!)

S1 = C [event eA(sid(m̃sgA), kA, ĩ); let k ′A = kA in cA [̃i]〈MA〉; Q1A,

event eB(sid(m̃sgB), kB); cB [̃i ′]〈MB〉; Q1B]
S2 = c1(); new k : T ; c2〈〉; (Q2A | Q2B)
S2! = AddReplSid(̃i ≤ ñ, c ′1, Tsid, S2)

where
1 C, Q1A, Q1B, Q2A, and Q2B make all their inputs and outputs on

pairwise distinct channels with indices the current replication indices;
2 cA, cB, c1, c ′1, c2, k ′A, eA, eB do not occur elsewhere in S1, S2!;
3 S1 and S2! have no common variable, channel, event, table;
4 S1 and S2! do not contain newChannel;
5 and there is no defined condition in S2.

m̃sgA is a sequence of variables
defined in C above the first hole

and input or output by C above the
first hole or by the output cA [̃i]〈MA〉

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 24 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Main composition theorem

Theorem (S1 and S2!)

S1 = C [event eA(sid(m̃sgA), kA, ĩ); let k ′A = kA in cA [̃i]〈MA〉; Q1A,

event eB(sid(m̃sgB), kB); cB [̃i ′]〈MB〉; Q1B]
S2 = c1(); new k : T ; c2〈〉; (Q2A | Q2B)
S2! = AddReplSid(̃i ≤ ñ, c ′1, Tsid, S2)

where
1 C, Q1A, Q1B, Q2A, and Q2B make all their inputs and outputs on

pairwise distinct channels with indices the current replication indices;
2 cA, cB, c1, c ′1, c2, k ′A, eA, eB do not occur elsewhere in S1, S2!;
3 S1 and S2! have no common variable, channel, event, table;
4 S1 and S2! do not contain newChannel;
5 and there is no defined condition in S2.

m̃sgB is a sequence of vari-
ables input or output by
C above the second hole

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 25 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Main composition theorem

Theorem (S1 and S2!)

S1 = C [event eA(sid(m̃sgA), kA, ĩ); let k ′A = kA in cA [̃i]〈MA〉; Q1A,

event eB(sid(m̃sgB), kB); cB [̃i ′]〈MB〉; Q1B]
S2 = c1(); new k : T ; c2〈〉; (Q2A | Q2B)
S2! = AddReplSid(̃i ≤ ñ, c ′1, Tsid, S2)

where
1 C, Q1A, Q1B, Q2A, and Q2B make all their inputs and outputs on

pairwise distinct channels with indices the current replication indices;
2 cA, cB, c1, c ′1, c2, k ′A, eA, eB do not occur elsewhere in S1, S2!;
3 S1 and S2! have no common variable, channel, event, table;
4 S1 and S2! do not contain newChannel;
5 and there is no defined condition in S2.
Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 26 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Main composition theorem

Theorem (Scomposed)
Let Q′2A = AddIdxSid(̃i ≤ ñ, x : Tsid, Q2A)
and Q′2B = AddIdxSid(̃i ′ ≤ ñ′, x : Tsid, Q2B).
Let c ′A, c ′B be fresh channels. Let

Scomposed = C [event eA(sid(m̃sgA), kA, ĩ); c ′A [̃i]〈MA〉;
(Q1A | Q′2A{kA/k, sid(m̃sgA)/x}),

event eB(sid(m̃sgB), kB); c ′B [̃i ′]〈MB〉;
(Q1B | Q′2B{kB/k, sid(m̃sgB)/x})]

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 27 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Main composition theorem

Theorem (First conclusion)
1 If S1 satisfies

secrecy of k ′
A with public variables V (V ⊆ var(S1) \ {kA, k ′

A}),
injective authentication of A to B:
inj-event(eB(sid , k)) =⇒ inj-event(eA(sid , k, ĩ))
with public variables V ∪ {k ′

A},
single eA for each session identifier:
event(eA(sid , k1, ĩ1)) ∧ event(eA(sid , k2, ĩ2)) =⇒ ĩ1 = ĩ2
with public variables V ∪ {k ′

A},
then we can transfer security properties from S2! to Scomposed .
Let S◦composed be Scomposed with the events of S1 removed.

S◦composed
∼→V1,V2

f S2!

for some f , any V1 ⊆ V ∪ (var(S2) \ {k}), and V2 = V1 ∩ var(S2).

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 28 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Main composition theorem

Theorem (Second conclusion)
2 We can transfer security properties from S1 to Scomposed , provided

they are proved with public variables k ′A, kB.

Scomposed ≈V ′
0 C ′[S1]

for some evaluation context C ′ acceptable for S1 with public
variables k ′A, kB and any V ′ ⊆ var(Scomposed) \ {k ′A}.
C ′ contains the events of S2!.
C ′ is independent of Q1A and Q1B.

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 29 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Further results in the paper

Exact security.
New: Shared hash oracles between the key exchange and the
protocol that uses the key.
New: Variant with non-injective authentication.
New: Variant for modified ClientHello messages.

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 30 / 38

Introduction Composition Application to TLS 1.3 Conclusion

TLS 1.3: Structure of the composition

Handshake without pre-shared key

Handshake with pre-shared key

Record protocol

ems

ems

cats sats resumption secret

cats sats
cets

resumption secret

updated ts

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 31 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Security of the handshake without pre-shared key

Mutual injective authentication.
Key secrecy: the keys

cats, ems, resumption secret client side,
sats server side

are secret.
Unique accept event for each session identifier.

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 32 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Security of the handshake with pre-shared key

Same properties as for the initial handshake, but
No compromise of PSK (resumption secret).

Limitation of CryptoVerif: cannot prove forward secrecy wrt. to the
compromise of PSK for PSK-DHE.

Weaker properties for 0-RTT:
The keys cets client side are secret.
If the ClientHello message received by the server has been sent by the
client, then we have non-injective authentication of client to server:
this session matches a session of the client with same key cets.
Otherwise,

If the ClientHello message has been received before, then the key cets
computed by the server is the same as in the previous session with
the same ClientHello message.
Otherwise, the key cets computed by the server is secret, independent
from other keys.

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 33 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Security of the record protocol

The client and the server share a fresh random traffic secret.
Key secrecy: The updated traffic secret is secret.
Message secrecy: When the adversary provides two sets of plaintexts
mi and m′i of the same padded length, it is unable to determine
which set is encrypted, even when the updated traffic secret is
leaked.
Injective message authentication: Every time a message m is
decrypted by the receiver with a counter c, the message m has been
encrypted and sent by an honest sender with the same counter c.

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 34 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Composition

Handshake without pre-shared key

Handshake with pre-shared key

Record protocol

ems

ems

cats sats resumption secret

cats sats
cets

resumption secret

updated ts

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 35 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Composition
1 We compose the record protocol with itself recursively.

We obtain security of the record protocol with an unbounded number
of key updates.

2 We replicate that record protocol.
3 We compose the handshake with pre-shared key with the obtained

record protocol, with keys cats, sats, and with weaker properties
cets.

4 We replicate and compose the handshake with pre-shared key with
itself recursively, with key resumption secret.

We obtain security for an unbounded number of handshakes with
pre-shared key.

5 We compose the handshake without pre-shared key with the record
protocol, with keys cats and sats.

6 We compose the obtained handshake without pre-shared key with
the obtained handshake with pre-shared key, with key
resumption secret.

We obtain security for TLS 1.3 draft 18.
Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 36 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Conclusion

Composition theorems for CryptoVerif
computational
easy to apply when the protocol pieces are proved secure in
CryptoVerif
flexible: hash oracles, injective and non-injective authentication

Application to TLS 1.3
important protocol
would be out of scope of CryptoVerif without composition because of
loops

Applicable to other protocols

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 37 / 38

Introduction Composition Application to TLS 1.3 Conclusion

Future directions

Composition theorems could be proved for other tools, such as
EasyCrypt.
We could automate the verification of the assumptions of our
theorems and the computation of the composed protocol.

Automating the TLS case study would be more difficult (recursive
composition).

We could consider composition with a key exchange protocol that
already uses the key.

Bruno Blanchet (INRIA) Composition for CryptoVerif March 2018 38 / 38

	Introduction
	Composition
	Application to TLS 1.3
	Conclusion

